Thermal and flammability properties of polyethylene composites with fibers to replace natural wood

2021 ◽  
pp. 073168442110028
Author(s):  
Jairo da Silva Rocha ◽  
Viviane A Escócio ◽  
Leila LY Visconte ◽  
Élen BAV Pacheco

Composites of high-density polyethylene and lignocellulosic fiber residues from banana, papaya, and peach palm trees, in addition to sponge gourd and coconut fiber, were investigated to identify the least flammable composite as a potential substitute for natural pine wood. The high-density polyethylene/lignocellulosic fiber composites were prepared in a twin-screw extruder, injection molded to obtain specimens, and characterized in terms of thermogravimetry, flammability using the UL-94 burning test and limiting oxygen index, impact resistance and heat deflection temperature. The high-density polyethylene/sponge gourd fiber composite showed the best impact resistance and was selected for further tests, with the addition of 10wt% magnesium hydroxide and (or) rice husk ash as flame retardants. The use of both retardants provided greater thermal stability to the composite. The addition of magnesium hydroxide to the high-density polyethylene/sponge gourd fiber composite improved the flammability properties of horizontal burning and thermal stability and is a potential candidate to replace natural wood.

2017 ◽  
Vol 374 (1) ◽  
pp. 1600116 ◽  
Author(s):  
Edgar N. Cabrera Álvarez ◽  
Luis F. Ramos-deValle ◽  
Saul Sánchez-Valdes ◽  
Eduardo Ramírez-Vargas ◽  
Adriana B. Espinoza-Martinez ◽  
...  

2016 ◽  
Vol 857 ◽  
pp. 191-195 ◽  
Author(s):  
A. Nadiatul Husna ◽  
Bee Ying Lim ◽  
H. Salmah ◽  
Chun Hong Voon

Palm kernel shells (PKS) filled recycled high density polyethylene (rHDPE) biocomposites were produced using melt mixing. The biocomposites were prepared on Brabender Plasticorder at temperature of 185 °C and rotor speed of 50 rpm by varying filler loading (0 to 40 phr). In this study, the effect of PKS loading on rheological properties and thermal stability of rHDPE/PKS were investigated. Rheological study of the biocomposites was carried out by means of capillary rheometer under temperature of 190 °C, 200 °C and 210 °C. Thermal properties of biocomposites were studied by using thermo gravimetric analysis (TGA). The rheological results showed that the flowability of the composite increased with increasing temperature. Meanwhile, the result of TGA showed that at higher PKS loading, rHDPE/PKS biocomposites had lower total weight loss. The thermal stability of the biocomposites was reduced due to the addition of filler loading.


Sign in / Sign up

Export Citation Format

Share Document