Palm Kernel Shell Filled Recycled High-Density Polyethylene: Effect of Filler Loading

2016 ◽  
Vol 857 ◽  
pp. 191-195 ◽  
Author(s):  
A. Nadiatul Husna ◽  
Bee Ying Lim ◽  
H. Salmah ◽  
Chun Hong Voon

Palm kernel shells (PKS) filled recycled high density polyethylene (rHDPE) biocomposites were produced using melt mixing. The biocomposites were prepared on Brabender Plasticorder at temperature of 185 °C and rotor speed of 50 rpm by varying filler loading (0 to 40 phr). In this study, the effect of PKS loading on rheological properties and thermal stability of rHDPE/PKS were investigated. Rheological study of the biocomposites was carried out by means of capillary rheometer under temperature of 190 °C, 200 °C and 210 °C. Thermal properties of biocomposites were studied by using thermo gravimetric analysis (TGA). The rheological results showed that the flowability of the composite increased with increasing temperature. Meanwhile, the result of TGA showed that at higher PKS loading, rHDPE/PKS biocomposites had lower total weight loss. The thermal stability of the biocomposites was reduced due to the addition of filler loading.

2015 ◽  
Vol 74 (10) ◽  
Author(s):  
Supri A. G. ◽  
A. R. H. Fatimah ◽  
Z. Firuz

Taro powder (TP) filled composites based on recycled high density polyethylene (RHDPE)/ ethylene vinyl acetate (EVA) were prepared via melt blending method. Polyethylene-grafted-maleic anhydride (PE-g-MAH) was used as a compatibilizer to enhance interfacial bonding of RHDPE/EVA/TP composites. The effects of TP loading and the addition of PE-g-MAH on the tensile properties and thermal stability of RHDPE/EVA/TP composites were investigated and studied. Findings indicated that increased TP loading will reduce tensile strength and elongation at break while increasing the modulus of elasticity. The thermal stability of RHDPE/EVA/TP composites improved by increasing filler loading. With respect to both tensile properties and thermal stability, RHDPE/EVA/TP composites with PE-g-MAH performed better than the composites without the addition of compatibilizers. 


2014 ◽  
Vol 6 (2) ◽  
pp. 1122-1134 ◽  
Author(s):  
Mokhtar Hemdan Abd El-Salam

Due to the light weight, high specific strength and non hazardous nature of bamboo fiber, it is preferred over synthetic fibers in composite materials for a wide range of applications such as automotive industry and including household sectors. As was noticed, little attention has been given to the effect of bamboo powder on the mechanical properties of rubber composites. Hence, an attempt has been made in this paper to the study the effect of loading and particle size of bamboo powder on the mechanical properties of EPDM composites. Thermo-gravimetric analysis (TGA) was carried out to study the thermal stability of composites. Results indicated that the thermal stability of EPDM was further improved with increasing in bamboo loading and decreasing in particle size. The stress- strain curves of the composites were studied and fitted according toOgden’s model. Mechanical parameters for the studied composites were improved with increasing bamboo loading. Besides, properties such as rupture stress, and internal friction were found to be maximum for composites containing certain content of bamboo powder, depending upon its particle size. Moreover, composites containing the smallest particle size of powder, at all levels of bamboo loading, showed mechanical properties superior to all other composites. From the dynamic mechanical measurements, the dynamic modulus, internal friction, and thermal diffusivity were calculated. The observed variations were explained in view of the role played by both the loading level and the particle size of bamboo powder. These findings were supported by scanning electron microscopy (SEM) micrographs.


2020 ◽  
pp. 096739112093461
Author(s):  
WVWH Wickramaarachchi ◽  
S Walpalage ◽  
SM Egodage

Blending of two or more polymers generates a new material, which is more cost-effective than a newly synthesised material. Blending-type thermoplastic elastomer (TPE) is produced by melt-mixing of a thermoplastic with a rubber. These blends have high demands associated with excellent property combinations of the parent materials. Particulate fillers are used in the rubber and plastic industry for property modification and cost reduction. In this work, six particulate fillers, namely, calcium carbonate, barium sulphate (BaSO4), kaolin, talc, Snobrite clay and dolomite were used to develop natural rubber (NR)/high-density polyethylene (HDPE) TPE blends, and the most suitable filler for roofing application was identified. A series of NR/HDPE 20/80 blends were prepared by varying filler loading from 10 phr to 30 phr at 10 phr intervals using a Plasticorder. Mechanical properties, such as tensile strength, hardness, impact strength and tear strength, and gel content of the blends were investigated. The addition of talc, dolomite and kaolin to NR/HDPE blend showed reduced impact strength, which is the most important property for a roofing application. The other three fillers showed improved impact strength at specific loadings. The blend with 30 phr of BaSO4 was identified as the best blend, as per the overall performance.


2011 ◽  
Vol 415-417 ◽  
pp. 666-670 ◽  
Author(s):  
Na Lu ◽  
Shubhashini Oza ◽  
Ian Ferguson

Natural fiber reinforced composites are being used as reinforcement material in composite system due to their positive environmental benefits. Added to that, natural fibers offer advantages such as low density, low cost, good toughness, high specific strength, relatively non-abrasive and wide availability. However, the low thermal stability of natural fibers is one of the major challenges to increase their use as reinforcing component. In this study, a thorough investigation has been done to compare the effect of two chemical treatment methods on the thermal stability of hemp fibers. 5wt% sodium hydroxide and 5wt% triethoxyvinylsilane was used for the treatment of hemp fibers. Fourier transform infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis were used for characterization of untreated and treated fiber. The results indicated that 24 hours alkali treatment and 3 hours silane treatment time enhanced the thermal stability of the hemp fiber. However, alkali treatment shows better improvement compared to silane treatment.


2015 ◽  
Vol 05 (03) ◽  
pp. 1550018 ◽  
Author(s):  
P. Thomas ◽  
B. S. Dakshayini ◽  
H. S. Kushwaha ◽  
Rahul Vaish

Composites of poly(methyl methacrylate) (PMMA) and [Formula: see text] (STMO) were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), thermo mechanical analysis (TMA) and impedance analyser for their structural, thermal and dielectric properties. The coefficient of thermal expansion (CTE) was measured between 40°C and 100°C for pure PMMA is 115.2 ppm/°C, which was decreased to 78.58 ppm/°C when the STMO content was increased to 50 wt.% in PMMA. There was no difference in the glass transition ([Formula: see text]) temperature of the PMMA polymer and their composites. However, the FTIR analysis indicated possible interaction between the PMMA and STMO. The density and the hardness were increased as the STMO content increased in the PMMA matrix. Permittivity was found to be as high as 30.9 at 100 Hz for the PMMA+STMO-50 wt.% composites, indicating the possibility of using these materials for capacitor applications. The thermal stability of polymer was enhanced by incorporation of STMO fillers.


2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


Sign in / Sign up

Export Citation Format

Share Document