scholarly journals Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials

2017 ◽  
Vol 35 (7) ◽  
pp. 747-756 ◽  
Author(s):  
Seyhan Firat ◽  
Jamal M Khatib ◽  
Gulgun Yilmaz ◽  
AT Comert
2014 ◽  
Vol 21 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Ismail Zorluer ◽  
Suleyman Gucek

AbstractThe use of waste materials as an additive in soil stabilization has been widespread. This is important in terms of recycling of waste materials and reducing environmental pollution. The objective of this study is to investigate the beneficial reuse of marble dust and fly ash in soil stabilization. Tests were performed on clay soil mixtures amended with marble dust and fly ash. Marble dust was used as an activator due to fly ash being inadequate for self-cementing. Unconfined compressive strength (qu), freeze-thaw, swelling, and California bearing ratio (CBR) tests were conducted to investigate the effect of marble dust and fly ash, curing time, and molding water content on geotechnical parameters. Addition of marble dust and fly ash increased unconfined compressive strength, CBR, and freeze-thaw strength, but these additives decreased swelling potential and grain loss after freeze-thaw. Increasing the curing time results in increased strength of mixtures and decreased grain loss. As a result, this study shows that the geotechnical properties of clay soil are improved with the addition of marble dust and fly ash. This is an economical and environmentally friendly solution.


2021 ◽  
Vol 33 (3) ◽  
pp. 04021001
Author(s):  
Maheshbabu Jallu ◽  
Sireesh Saride ◽  
Arul Arulrajah ◽  
Subrahmanyam Challapalli ◽  
Robert Evans
Keyword(s):  
Fly Ash ◽  

2010 ◽  
Vol 54 (11) ◽  
pp. 878-892 ◽  
Author(s):  
Bora Cetin ◽  
Ahmet H. Aydilek ◽  
Yucel Guney
Keyword(s):  
Fly Ash ◽  

Author(s):  
Zaryab Ahmed Rid ◽  
Syed Naveed Raza Shah ◽  
Muhammad Jaffar Memon ◽  
Ashfaque Ahmed Jhatial ◽  
Manthar Ali Keerio ◽  
...  

CATENA ◽  
2015 ◽  
Vol 133 ◽  
pp. 250-254 ◽  
Author(s):  
Jerzy Weber ◽  
Stanisława Strączyńska ◽  
Andrzej Kocowicz ◽  
Mirosława Gilewska ◽  
Adam Bogacz ◽  
...  
Keyword(s):  
Fly Ash ◽  

2017 ◽  
Vol 12 (2) ◽  
pp. 106-116 ◽  
Author(s):  
Rajan Choudhary ◽  
Dibyatonu Chattopadhyay ◽  
Abhinay Kumar ◽  
Ashok Julaganti

For a fast developing economy like India, expansion, rehabilitation, and maintenance of transportation infrastructure is crucial and require huge quantities of high quality natural aggregates. Meanwhile, vast amounts of industrial wastes accumulating in the country pose problems related to safe and sustainable disposal. The present study investigated possible utilisation of marble dust, a waste from stone industry, and fly ash, a waste from thermal power stations, as filler materials in open-graded friction course mixes. Open-graded friction course mixes incorporating fly ash, marble dust, and two sources of stone dust as filler fractions were designed and evaluated for mix design properties including draindown, abrasion loss, air void content, and permeability. Morphology of each filler was characterised through scanning electron microscopy. Physicochemical properties of fillers were examined through Rigden voids, German filler test, methylene blue, and hydrometer analysis. Analysis of variance using Fisher multiple comparison procedure was performed to evaluate the effect of filler type on design properties of open-graded friction course mixes. Regression analysis using forward selection technique was performed to identify significant filler characteristics influencing open-graded friction course properties. Results showed that filler type affected open-graded friction course design parameters significantly. Open-graded friction course mixes with marble dust showed promising performance with lowest draindown, and highest durability, air voids, and permeability. Regression analysis identified Rigden void content of filler materials as a major filler characteristic affecting the mix design parameters of open-graded friction course mixes.


Sign in / Sign up

Export Citation Format

Share Document