Mesenchymal stem cells-conditioned medium protects PC12 cells against 2,5-hexanedione-induced apoptosis via inhibiting mitochondria-dependent caspase 3 pathway

2016 ◽  
Vol 33 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Shuang-yue Li ◽  
Yuan Qi ◽  
Shu-hai Hu ◽  
Feng-yuan Piao ◽  
Huai Guan ◽  
...  

Studies suggested that the conditioned medium of mesenchymal stem cells (MSC-CM) inhibited the increased apoptosis in various cells. However, there are no reports underlying the protection of MSC-CM against 2,5-hexanedione (HD)-induced apoptosis in neural cells. In the present study, the viability was observed in PC12 cells that received HD alone or with MSC-CM by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was estimated by Hoechst 33342 staining and flow cytometry. Mitochondrial transmembrane potential was examined by rhodamine 123. Moreover, we investigated the expression of Bax and Bcl-2, cytochrome c translocation, and caspase 3 activity by real-time polymerase chain reaction, Western blot, and immunochemistry. Nerve growth factor (NGF) was examined in MSCs and MSC-CM. Our results showed that MSC-CM promoted cell survival and reduced apoptosis in HD-exposed PC12 cells. Moreover, MSC-CM significantly reversed disturbance of Bax and Bcl-2, ameliorated disruption of mitochondrial transmembrane potential, and reduced release of cytochrome c and activity of caspase 3 in HD-exposed PC12 cells. In the meantime, NGF was detected in MSCs and MSC-CM. These findings demonstrate that MSC-CM protects against HD-induced apoptosis in PC12 cells via inhibiting mitochondrial pathway. Our results indicate that NGF in MSC-CM may be involved in the protection of MSC-CM against HD-induced apoptosis. Our study clarifies the protection of MSC-CM on HD neurotoxicity and its underlying mechanism.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Zhenhua Liu ◽  
Liangbin Gao ◽  
Peng Wang ◽  
Zhongyu Xie ◽  
Shuizhong Cen ◽  
...  

Ankylosing spondylitis (AS) is an autoimmune disease with unknown etiology. Dysregulated mesenchymal stem cells (MSCs) apoptosis may contribute to the pathogenesis of autoimmune diseases. However, apoptosis of MSCs from patients with AS (ASMSCs) has not been investigated yet. The present study aims to assess the apoptosis of bone marrow-derived ASMSCs and to investigate the underlying mechanisms of altered ASMSCs apoptosis. We successfully induced the apoptosis of ASMSCs and MSCs from healthy donors (HDMSCs) using the combination of tumor necrosis factor alpha (TNF-α) and cycloheximide (CHX). We found that ASMSCs treated with TNF-αand CHX showed higher apoptosis levels compared to HDMSCs. During apoptosis, ASMSCs expressed significantly more TRAIL-R2, which activated both the death receptor pathway and mitochondria pathway by increasing the expression of FADD, cleaved caspase-8, cytosolic cytochrome C, and cleaved caspase-3. Inhibiting TRAIL-R2 expression using shRNA eliminated the apoptosis differences between HDMSCs and ASMSCs by partially reducing ASMSCs apoptosis but minimally affecting that of HDMSCs. Furthermore, the expression of FADD, cleaved caspase-8, cytosolic cytochrome C, and cleaved caspase-3 were comparable between HDMSCs and ASMSCs after TRAIL-R2 inhibition. These results indicated that increased TRAIL-R2 expression results in enhanced ASMSCs apoptosis and may contribute to AS pathogenesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Donghua Huang ◽  
Yizhong Peng ◽  
Kaige Ma ◽  
Xiangcheng Qing ◽  
Xiangyu Deng ◽  
...  

Puerarin (PUR), an 8-C-glucoside of daidzein extracted from Pueraria plants, is closely related to autophagy, reduced reactive oxygen species (ROS) production, and anti-inflammatory effects, but its effects on human nucleus pulposus mesenchymal stem cells (NPMSCs) have not yet been identified. In this study, NPMSCs were cultured in a compression apparatus to simulate the microenvironment of the intervertebral disc under controlled pressure (1.0 MPa), and we found that cell viability was decreased and apoptosis level was gradually increased as compression duration was prolonged. After PUR administration, apoptosis level evaluated by flow cytometry and caspase-3 activity was remitted, and protein levels of Bas as well as cleaved caspase-3 were decreased, while elevated Bcl-2 level was identified. Moreover, ATP production detection, ROS, and JC-1 fluorography as well as quantitative analysis suggested that PUR could attenuate intercellular ROS accumulation and mitochondrial dysfunction. Besides, the rat tail compression model was utilized, which indicated that PUR could restore impaired nucleus pulposus degeneration induced by compression. The PI3K/Akt pathway was identified to be deactivated after compression stimulation by western blot, and PUR could rescue the phosphorylation of Akt, thus reactivating the pathway. The effects of PUR, such as antiapoptosis, cell viability restoration, antioxidation, and mitochondrial maintenance, were all counteracted by application of the PI3K/Akt pathway inhibitor (LY294002). Summarily, PUR could alleviate compression-induced apoptosis and cell death of human NPMSCs in vitro as well as on the rat compression model and maintain intracellular homeostasis by stabilizing mitochondrial membrane potential and attenuating ROS accumulation through activating the PI3K/Akt pathway.


2017 ◽  
Vol 30 (4) ◽  
pp. 383-394 ◽  
Author(s):  
Thangavelu Soundara Rajan ◽  
Francesca Diomede ◽  
Placido Bramanti ◽  
Oriana Trubiani ◽  
Emanuela Mazzon

Neuronal cell death is a normal process during central nervous system (CNS) development and is also involved in the death of motor neurons in diverse spinal motor neuron degenerative diseases. Here, we investigated the neuroprotective effect of secretory factors released from human gingival mesenchymal stem cells (hGMSCs) in mechanically injured murine motor-neuron-like NSC-34 cells. The cells were exposed to scratch injury and the markers for apoptosis and oxidative stress were examined. Immunocytochemistry results showed that proapoptotic markers cleaved caspase-3 and Bax were elevated while anti-apoptotic protein Bcl-2 was suppressed in scratch-injured NSC-34 cells. Oxidative stress markers SOD-1, inducible nitric oxide synthase (iNOS), Cox-2, and proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were activated. Conditioned medium (CM) derived from hGMSCs (hGMSC-CM) significantly blocked the cell death by suppressing SOD-1, iNOS, TNF-α, cleaved caspase-3, and Bax. Bcl-2 and anti-inflammatory cytokine anti-interleukin 10 (IL-10) were increased in hGMSC-CM-treated injured cells. Moreover, hGMSC-CM treatment upregulated neurotrophins anti-brain-derived neurotrophic factor (BDNF) and NT3. Western blot data of hGMSC-CM revealed the presence of neurotrophins nerve growth factor (NGF), NT3, anti-inflammatory cytokines IL-10, and transforming growth factor beta (TGF-β), suggesting their positive role to elicit neuroprotection. Our results propose that hGMSC-CM may serve as a simple and potential autologous therapeutic tool to treat motor neuron injury.


2015 ◽  
Vol 53 (3) ◽  
pp. 222-235 ◽  
Author(s):  
Ruolin CHEN ◽  
Shuang LIU ◽  
Fengyuan PIAO ◽  
Zhemin WANG ◽  
Yuan QI ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xinyuan Yang ◽  
Jingchun Du ◽  
Xia Xu ◽  
Chun Xu ◽  
Wu Song

Mesenchymal stem cells (MSCs) can exhibit either prooncogenic or antitumor properties depending on the context. Based on our previous study, we hypothesized that MSCs engineered to deliver IFN-γwould kill cancer cells through persistent activation of the TRAIL pathway. Human bone-marrow (BM-) derived MSCs were isolated, amplified, and transduced with a lentiviral vector encoding the IFN-γgene under the control of the EF1αpromoter. The IFN-γ-modified MSCs effectively secreted functional IFN-γ, which led to long-term expression of TRAIL. More importantly, the IFN-γ-modified MSCs selectively induced apoptosis in lung tumor cells through caspase-3 activation within the target cells. The percentage of activated-caspase-3-positive tumor cells in IFN-γ-modified MSCs cocultures was significantly higher than in control MSCs cocultures. Treatment with anti-TRAIL antibody dramatically suppressed the caspase-3 activation observed in H460 cells. After injection into nude mice, the IFN-γ-modified MSCs inhibited the growth and progression of lung carcinoma compared with control cells. Collectively, our results provide a new strategy for tumor therapy that utilizes IFN-γ-modified MSCs.


Sign in / Sign up

Export Citation Format

Share Document