Heterozygous Missense Pathogenic Variants Within the Second Spectrin Repeat of SPTBN2 Lead to Infantile-Onset Cerebellar Ataxia

2019 ◽  
Vol 35 (2) ◽  
pp. 106-110 ◽  
Author(s):  
Andrea Accogli ◽  
Judith St-Onge ◽  
Nassima Addour-Boudrahem ◽  
Joël Lafond-Lapalme ◽  
Alexandre Dionne Laporte ◽  
...  

The term spinocerebellar ataxia encompasses a heterogeneous group of neurodegenerative disorders due to pathogenic variants in more than 100 genes, underlying 2 major groups of ataxia: autosomal dominant cerebellar ataxias (ADCA, also known as spinocerebellar ataxias [SCAs]) due to heterozygous variants or polyglutamine triplet expansions leading to adult-onset ataxia, and autosomal recessive spinocerebellar ataxias (ARCAs, also known as SCARs) due to biallelic variants, usually resulting in more severe and earlier-onset cerebellar ataxia. Certain ataxia genes, including SPTBN2 which encodes β-III spectrin, are responsible for both SCA and SCAR, depending on whether the pathogenic variant occurs in a monoallelic or biallelic state, respectively. Accordingly, 2 major phenotypes have been linked to SPTBN2: pathogenic heterozygous in-frame deletions and missense variants result in an adult-onset, slowly progressive ADCA (SCA5) through a dominant negative effect, whereas biallelic loss-of-function variants cause SCAR14, an allelic disorder characterized by infantile-onset cerebellar ataxia and cognitive impairment. Of note, 2 heterozygous missense variants (c.1438C>T, p.R480 W; c.1309C>G, p.R437G), both lying in the second spectrin repeat of SPTBN2, have been linked to infantile-onset cerebellar ataxia, similar to SCAR14. Here, we report a novel de novo heterozygous pathogenic missense variant (c.1310G>A) in SPTBN2 in a child with infantile-onset cerebellar ataxia and mild cognitive impairment. This variant affects the same R437 residue of the second spectrin repeat but results in a different amino acid change (p.R437Q). We review previously reported cases and discuss possible pathomechanisms responsible for the early-onset cerebellar phenotype due to disease-causing variants in the second spectrin repeat.

2021 ◽  
Author(s):  
Johanna Krueger ◽  
Julian Schubert ◽  
Josua Kegele ◽  
Audrey Labalme ◽  
Miaomiao Mao ◽  
...  

Objective: De novo missense variants in KCNQ5, encoding the voltage–gated K+ channel KV7.5, have been described as a cause of developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease–related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. Methods: 1292 families with GGE were studied by next-generation sequencing. Whole–cell patch–clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with docking and homology modeling. Results: We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures, two variants were also associated with mild to moderate ID. All three missense variants displayed a strongly decreased current density indicating a loss–of–function (LOF). When mutant channels were co–expressed with wild–type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant–negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The p.Arg359Cys variant altered PI(4,5)P2–interaction, presumably in the non–conducting preopen–closed state. Interpretation: Our study indicates that specific deleterious KCNQ5 variants are associated with GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant–negative effects through functional, rather than trafficking deficits. LOF of KV7.5 channels will reduce the M–current, likely resulting in increased excitability of KV7.5–expressing neurons. Further studies on a network level are necessary to understand which circuits are affected and how the variants induce generalized seizures.


2019 ◽  
Vol 57 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Laurence Hubert ◽  
Magda Cannata Serio ◽  
Laure Villoing-Gaudé ◽  
Nathalie Boddaert ◽  
Anna Kaminska ◽  
...  

BackgroundAutistic spectrum disorders (ASDs) with developmental delay and seizures are a genetically heterogeneous group of diseases caused by at least 700 different genes. Still, a number of cases remain genetically undiagnosed.ObjectiveThe objective of this study was to identify and characterise pathogenic variants in two individuals from unrelated families, both of whom presented a similar clinical phenotype that included an ASD, intellectual disability (ID) and seizures.MethodsWhole-exome sequencing was used to identify pathogenic variants in the two individuals. Functional studies performed in the Drosophila melanogaster model was used to assess the protein function in vivo.ResultsProbands shared a heterozygous de novo secretory carrier membrane protein (SCAMP5) variant (NM_001178111.1:c.538G>T) resulting in a p.Gly180Trp missense variant. SCAMP5 belongs to a family of tetraspanin membrane proteins found in secretory and endocytic compartments of neuronal synapses. In the fly SCAMP orthologue, the p.Gly302Trp genotype corresponds to human p.Gly180Trp. Western blot analysis of proteins overexpressed in the Drosophila fat body showed strongly reduced levels of the SCAMP p.Gly302Trp protein compared with the wild-type protein, indicating that the mutant either reduced expression or increased turnover of the protein. The expression of the fly homologue of the human SCAMP5 p.Gly180Trp mutation caused similar eye and neuronal phenotypes as the expression of SCAMP RNAi, suggesting a dominant-negative effect.ConclusionOur study identifies SCAMP5 deficiency as a cause for ASD and ID and underscores the importance of synaptic vesicular trafficking in neurodevelopmental disorders.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 663
Author(s):  
Stijn van de Plassche ◽  
Arjan PM de Brouwer

MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.


Neurology ◽  
2017 ◽  
Vol 89 (4) ◽  
pp. 385-394 ◽  
Author(s):  
Sarah von Spiczak ◽  
Katherine L. Helbig ◽  
Deepali N. Shinde ◽  
Robert Huether ◽  
Manuela Pendziwiat ◽  
...  

Objective:To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.Methods:We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.Results:We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.Conclusions:The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.


2002 ◽  
pp. 649-656 ◽  
Author(s):  
J Rutishauser ◽  
P Kopp ◽  
MB Gaskill ◽  
TJ Kotlar ◽  
GL Robertson

OBJECTIVE: To test further the hypothesis that autosomal dominant neurohypophyseal diabetes insipidus (adFNDI) is caused by heterozygous mutations in the vasopressin-neurophysin II (AVP-NPII) gene that exert a dominant negative effect by producing a precursor that misfolds, accumulates and eventually destroys the neurosecretory neurons. METHODS: Antidiuretic function, magnetic resonance imaging (MRI) of the posterior pituitary and AVP-NPII gene analysis were performed in 10 affected members of three unreported families with adFNDI. RESULTS: As in previously studied patients, adFNDI apparently manifested after birth, was due to a partial or severe deficiency of AVP, and was associated with absence or diminution of the hyperintense MRI signal normally emitted by the posterior pituitary, and with a heterozygous mutation in the AVP-NPII gene. In family A, a transition 275G-->A, which predicts replacement of cysteine 92 by tyrosine (C92Y), was found in the index patient, but not in either parent, indicating that it arose de novo. The six affected members of family B had a transversion 160G-->C, which predicts replacement of glycine 54 by arginine (G54R). It appeared de novo in the oldest affected member, and was transmitted in a dominant manner. In family C, six of 15 living affected members were tested and all had a novel transition, 313T-->C, which predicts replacement of cysteine 105 by arginine (C105R). It, too, was transmitted in a dominant manner. As in other patients with adFNDI, the amino acids replaced by the mutations in these three families are known to be particularly important for correct and efficient folding of the precursor. CONCLUSIONS: These findings are consistent with the malfolding/toxicity hypothesis underlying the pathogenesis of adFNDI. Moreover, they illustrate the value of genetic analysis in all patients who develop idiopathic diabetes insipidus in childhood, even if no other family members are affected.


2019 ◽  
Author(s):  
Nicole A. Hawkins ◽  
Sunita N. Misra ◽  
Manuel Jurado ◽  
Nicholas C. Vierra ◽  
Kimberly Nguyen ◽  
...  

AbstractDevelopmental and epileptic encephalopathies (DEE) are a group of severe epilepsies that usually present with intractable seizures, developmental delay and are at a higher risk for premature mortality. Numerous genes have been identified as a monogenic cause of DEE, including KCNB1. The voltage-gated potassium channel KV2.1, encoded by KCNB1, is primarily responsible for delayed rectifier potassium currents that are important regulators of excitability in electrically excitable cells, including neurons and cardiomyocytes. The de novo pathogenic variant KCNB1-p.G379R was identified in an infant with epileptic spasms, atonic, focal and tonic-clonic seizures that were refractory to treatment with standard antiepileptic drugs. Previous work demonstrated deficits in potassium conductance, but did not assess non-conducting functions. To determine if the G379R variant affected clustering at endoplasmic reticulum-plasma membrane junctions KV2.1-G379R was expressed in HEK293T cells. KV2.1-G379R expression did not induce formation of endoplasmic reticulum-plasma membrane junctions, and co-expression of KV2.1-G379R with KV2.1-WT lowered induction of these structures relative to KV2.1-WT alone, suggesting a dominant negative effect. To model this variant in vivo, we introduced Kcnb1G379R into mice using CRISPR/Cas9 genome editing. We characterized neurological and neurobehavioral phenotypes of Kcnb1G379R/+ (Kcnb1R/+) and Kcnb1G379R/G379R (Kcnb1R/R) mice, and screened for cardiac abnormalities. Immunohistochemistry studies on brains from Kcnb1+/+ (WT), Kcnb1R/+ and Kcnb1R/R mice revealed genotype-dependent differences in the levels and subcellular localization of KV2.1, with reduced plasma membrane expression of the KV2.1-G379R protein, consistent with in vitro data. Kcnb1R/+ and Kcnb1R/R mice displayed profound hyperactivity, repetitive behaviors, impulsivity and reduced anxiety. In addition, both Kcnb1R/+ and Kcnb1R/R mice exhibited abnormal interictal EEG abnormalities, including isolated spike and slow waves. Spontaneous seizure events were observed in Kcnb1R/R mice during exposure to novel environments and/or handling, while both Kcnb1R/+ and Kcnb1R/R mutants were more susceptible to induced seizures. Kcnb1R/+ and Kcnb1R/R mice exhibited prolonged rate-corrected QT interval on surface ECG recording. Overall, the Kcnb1G379R mice recapitulate many features observed in individuals with DEE due to pathogenic variants in KCNB1. This new mouse model of KCNB1 associated DEE will be valuable for improving the understanding of the underlying pathophysiology and will provide a valuable tool for the development of therapies to treat this pharmacoresistant DEE.


2021 ◽  
Author(s):  
Hans-Jürgen Kreienkamp ◽  
Matias Wagner ◽  
Heike Weigand ◽  
Allyn McConkie-Rossell ◽  
Marie McDonald ◽  
...  

AbstractBain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype–phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


2017 ◽  
Vol 55 (8) ◽  
pp. 561-566 ◽  
Author(s):  
Genay O Pilarowski ◽  
Hilary J Vernon ◽  
Carolyn D Applegate ◽  
Leandros Boukas ◽  
Megan T Cho ◽  
...  

BackgroundThe list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism.ObjectivesTo explore whether variants in CHD1 are associated with a human phenotype.MethodsWe used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts.ResultsHere we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1.ConclusionsOur results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.


Sign in / Sign up

Export Citation Format

Share Document