Electrospun PU/MgO/Ag Nanofibers for Antibacterial Activity and Flame Retardency

2021 ◽  
pp. 0887302X2110094
Author(s):  
V. Mamtha ◽  
H. N. Narasimha Murthy ◽  
V. Pujith Raj ◽  
Prashantha Tejas ◽  
C. S. Puneet ◽  
...  

Antibacterial activity and fire retardation are equally desired for protective clothing. For achieving this, AgNP and MgO are independently researched as nanofillers in Polyurethane based electrospun nanofibers and their synergistic effect is scarcely addressed. This article reports synthesis and characterization of MgO of 70.01 nm and AgNP of 51 to 76 nm by solution combustion and hydrothermal routes respectively and their incorporation in electrospinning of Polyurethane. Flow rate 1 ml/hr, applied voltage 13 kV, tip to collector distance 15 cm were adopted for the electrospinning. Nanofibers of 65 nm were obtained for PU/MgO (3 wt. %) and 106 nm for PU/MgO (3 wt. %)/Ag (1 wt. %). Addition of MgO increased the melting point, after flame time and afterglow time. Incorporation of AgNP improved antibacterial activity. PU/MgO/Ag (2 wt. %) exhibited zone of inhibition of 2.1 cm and 3 cm against E. Coli and S. Aureus, respectively.

ChemistryOpen ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Thammadihalli Nanjundaiah Ravishankar ◽  
Thippeswamy Ramakrishnappa ◽  
Ganganagappa Nagaraju ◽  
Hanumanaika Rajanaika

Author(s):  
Khalil Ahmad ◽  
Raeesa Noor ◽  
Muhammad Younus ◽  
Akram Chohan ◽  
Ume Habiba ◽  
...  

Background: Appearance of antibiotic resistance has raised the demand to find alternative therapies and modified drug delivery system of medicinal plants to treat bacterial infections. Objective: The aim of this study is the green synthesis and characterization of silver nanoparticles by using crude extract of Crotalaria burhia and to evaluate their antibacterial potential. Methods: The roots and stems of plant were used to prepare the crude extract. The phytochemical analysis of different compounds in extract was performed. 1mM AgNO3 and different concentrations of plant extract were used for the green synthesis of silver nanoparticles. The particles size and zeta potential were measured by zeta sizer while surface morphology of silver nanoparticles was observed with Scanning Electron Microscope (SEM). The antibacterial activity of silver nanoparticles was performed by 96 well microdilution plate method. Results: The particle size and zeta potential of optimized formulation was 92 nm and -24.8 mV. The SEM analysis showed that silver nanoparticles are irregular and spherical shape. The antibacterial activity showed that MIC value of silver nanoparticles was lower for E. coli than S. aureus. Conclusion: Silver nanoparticles possess potent bactericidal activity against E. coli and moderate activity against S. aureus. It had been concluded that these nanoparticles can be used against multi-drug resistant bacterial infections.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 573
Author(s):  
Naheed Zafar ◽  
Bushra Uzair ◽  
Muhammad Bilal Khan Niazi ◽  
Ghufrana Samin ◽  
Asma Bano ◽  
...  

We sincerely apologize for the inconvenience of updating the authorship [...]


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36715-36726 ◽  
Author(s):  
Bakhshali Massoumi ◽  
Somayeh Davtalab ◽  
Mehdi Jaymand ◽  
Ali Akbar Entezami

The aim of this study is the synthesis, and characterization of novel type AB2 Y-shaped miktoarm star conductive polyaniline-modified poly(ethylene glycol), and preparation of its electrospun nanofibers blend with poly(ε-caprolactone).


Sign in / Sign up

Export Citation Format

Share Document