Effect of carbon fibre on reinforcement of thermoplastics using FDM and RSM

2019 ◽  
pp. 089270571988689 ◽  
Author(s):  
Fausz Naeem Chaudhry ◽  
Shahid Ikramullah Butt ◽  
Aamir Mubashar ◽  
Ali Bin Naveed ◽  
Syed Hussain Imran ◽  
...  

Continuous fibre-reinforced composites have significant industrial importance and usage. However, they are limited by design considerations and high-cost manufacturing operations. This article presents a way forward to utilize Fused Deposition Modelling – a 3D printing technique – to manufacture continuous carbon fibre-reinforced thermoplastics. Several parameters including number of reinforced layers, material impact and interlayer gap have been investigated and optimized using response surface method. Successful incorporation of modified novel nozzle design in a dual nozzle setup resulted in the realization of controlled manufacturing of continuously reinforced composites leading to reinforced yet smooth surface finished samples. Several samples were made, and mechanical testing, parameter optimization, strength calculations and fracture analysis were carried out. For polylactic acid (PLA), tensile strength of 112 MPa and flexural strength of 164 MPA were achieved – an almost 3 times increase from pure PLA printing. The approach presented in this article can forward continuous fibre-reinforced composites for industrial usage with its controlled fibre layup and programmable thread orientation features.

Author(s):  
Sérgio Luiz Moni Ribeiro Filho ◽  
Túlio Hallak Panzera ◽  
Lincoln Cardoso Brandão ◽  
Alexandre Mendes Abrão

2014 ◽  
Vol 2 (17) ◽  
pp. 6231 ◽  
Author(s):  
Samuel Lörcher ◽  
Thomas Winkler ◽  
Katarzyna Makyła ◽  
Claudiane Ouellet-Plamondon ◽  
Ingo Burgert ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 102-108
Author(s):  
J. Domenech-Pastor ◽  
P. Diaz-Garcia ◽  
D. Garcia

Composites are materials formed by the combination of two or more components that acquire better properties than the ones obtained by each component on its own. Composites have been widely used in the industry due to its light weight and good mechanical properties. To improve these properties several layers of reinforced material (e.g., carbon fibre) are overlapped which produce an increase in the fibre consumption. In this sense Tailored Fibre Placement (TFP) embroidery can offer good opportunity to reduce the consumption of reinforced fibre while improving the mechanical properties due to the alignment of the fibres in the effort direction. This study analyzes the performance of carbon fibre reinforced composites with Polyester resin made with TFP embroidery technology against flexural strength efforts and without using plain woven fabrics to demonstrate that the use of reinforcement fabrics in composites can be optimized by a curved alignment of the fibers. Two different structures were embroidered with TFP technology, one simulating a woven fabric with straight unidirectional alignment of fibres in horizontal and vertical direction, and a second structure made with curvilinear alignment of carbon fibers. After the study of the flexural mechanical properties an improvement of 18% was obtained in maximum flexural strength.


2016 ◽  
Vol 2 ◽  
pp. 96-103 ◽  
Author(s):  
Declan Carolan ◽  
A.J. Kinloch ◽  
A. Ivankovic ◽  
S. Sprenger ◽  
A.C. Taylor

2018 ◽  
Vol 152 ◽  
pp. 248-255 ◽  
Author(s):  
Mustapha Assarar ◽  
Wajdi Zouari ◽  
Rezak Ayad ◽  
Hocine Kebir ◽  
Jean-Marie Berthelot

Sign in / Sign up

Export Citation Format

Share Document