Preparation and characterization of a new type of symmetrical dicyclopentyl substituted cucurbit[6]uril

2021 ◽  
pp. 095400832110231
Author(s):  
Jun Zheng ◽  
Lin Zhang ◽  
Xinan Yang ◽  
Ye Meng ◽  
Yanmei Jin ◽  
...  

A symmetrical dicyclopentyl substituted cucurbit[6]uril (CyP2Q[6]) was synthesized, and crystallized under the conditions of 3 mol/L hydrochloric acid solution and the induction of ZnCl2. The crystal structure was characterized by X-ray single crystal diffractometer, 1H NMR and MS, and the results show that the crystal belongs to the monoclinic crystal system with P21/n space group, a = 13.095 (2), b = 33.002 (6), c = 15.770 (3), α = 90°, β = 102.828(5)°, γ = 90°, Z = 4, and a macroporous honeycomb structure appears in the crystal.

2007 ◽  
Vol 62 (6) ◽  
pp. 868-870 ◽  
Author(s):  
Johanna Kutuniva ◽  
Raija Oilunkaniemi ◽  
Risto S. Laitinen ◽  
Janne Asikkala ◽  
Johanna Kärkkäinen ◽  
...  

1-Butyl-2,3-dimethylimidazolium bromide {(bdmim)Br} (1) and iodide {(bdmim)I} (2) were prepared conveniently by the reaction of 1,2-dimethylimidazole and the corresponding 1-halobutane. The compounds were characterized by 1H and 13C{1H} NMR spectroscopy as well as by X-ray single crystal crystallography. 1 crystallizes in the monoclinic crystal system, space group P21/n, with Z = 4, and unit cell dimensions a = 8.588(2), b = 11.789(1), c = 10.737(2) Å, β = 91.62(3)°. Compound 2 crystallizes in the monoclinic crystal system, space group P21/c, with Z = 8, and unit cell dimensions a = 10.821(2), b = 14.221(3), c = 15.079(2) Å , β = 90.01(3)°. The lattices of the salts are built up of 1-butyl-2,3- dimethylimidazolium cations and halide anions. The cations of 1 form a double layer with the imidazolium rings stacked together due to π interactions. The Br− anions lie approximately in the plane of the imidazolium ring, and the closest interionic Br···H contacts span a range of 2.733(1) - 2.903(1) Å. Compound 2 shows no π stacking interactions. The closest interionic I···H contacts are 2.914(1) - 3.196(1) Å


1984 ◽  
Vol 62 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Sara Ariel ◽  
David Dolphin ◽  
George Domazetis ◽  
Brian R. James ◽  
Tak W. Leung ◽  
...  

The ruthenium(II) porphyrin complex Ru(OEP)(PPh3)2 (OEP = the dianion of octaethylporphyrin) has been prepared from Ru(OEP)(CO)EtOH, and the X-ray crystal structure determined; as expected, the six-coordinate ruthenium is situated in the porphyrin plane and has two axial phosphine ligands. Synthesized also from the carbonyl(ethanol) precursors were the corresponding tris(p-methoxyphenyl)phosphine complex, and the Ru(TPP)L2 (TPP = the dianion of tetraphenylporphyrin, L = PPh3, P(p-CH3OC6H4)3, P″Bu3) and Ru(TPP)(CO)PPh3 complexes. Optical and 1H nmr data are presented for the complexes in solution. In some cases dissociation of a phosphine ligand to generate five-coordinate species occurs and this has been studied quantitatively in toluene at 20 °C for the Ru(OEP)L2 and Ru(TPP)L2 systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Suresh Sharma ◽  
B. D. Gupta ◽  
Rajni Kant ◽  
Vivek K. Gupta

The structure of title compound Negundoside (2′-p-hydroxybenzoyl mussaenosidic acid) was established by spectral and X-ray diffraction studies. The compound crystallizes in the monoclinic crystal system with space group P21 having unit cell parameters: a=11.6201 (5) Å, b=9.2500 (4) Å, c=12.2516 (5) Å, β=97.793 (4)°, and Z=2. The crystal structure was solved by direct method using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R value of 0.0520 for 3389 observed reflections.


2017 ◽  
Vol 18 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Marina Z. Mijajlovic ◽  
Milos V. Nikolic ◽  
Dusan Lj. Tomovic ◽  
Andriana M. Bukonjic ◽  
Aleksandar Kocovic ◽  
...  

Abstract New platinum(IV)-complexes with S-alkyl derivatives of thiosalicylic acid (alkyl = benzyl-(L1), methyl-(L2), ethyl-(L3), propyl-(L4), butyl-(L5)) have been synthesized and characterized by microanalysis, infrared spectroscopy, and 1H and 13C NMR spectroscopy. Th e bidentate S,O ligand precursor, the S-butyl derivative of thiosalicylic acid (S-bu-thiosal), was prepared, and its crystal structure was determined. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a DMSO-water system. S-bu-thiosal crystallized in a P21/c space group of a monoclinic crystal system with a = 8.0732 (3) Å, b = 19.6769 (4) Å, c = 8.2291 (3) Å and Z = 4. S-bu-thiosal also has a coplanar geometry.


2003 ◽  
Vol 81 (12) ◽  
pp. 1482-1491 ◽  
Author(s):  
Tosha M Barclay ◽  
Ignacio del Río ◽  
Robert A Gossage ◽  
Sarah M Jackson

The synthesis and characterization of 11 zinc halide derivatives that contain monodentate oxazoline ligands is described. The treatment of ether solutions of [ZnX2] (X = Cl, Br, I) with 2-aryl- or 2-methyl-2-oxazolines results in the formation of mildly hygroscopic complexes of the general formulae [ZnX2(ox)2] (ox = 2-methyl-2-oxazoline (1), 2,4,4-trimethyl-2-oxazoline (2), 2-phenyl-2-oxazoline (3), or 4,4-dimethyl-2-phenyl-2-oxazoline (4)), except in the case of ZnI2, which does not form an isolable complex — likely for steric reasons — with oxazoline 4. Treatment of [ZnBr2(4)2] with 1 reveals (1H NMR) that 1 only sluggishly displaces coordinated 4 at temperatures below 50 °C. The structural characterization, via single crystal X-ray diffraction, of six of the complexes, viz. [ZnI2(1)2], [ZnI2(2)2], [ZnX2(3)2] (X = Cl, Br, or I), and [ZnBr2(4)2], is also reported. All of these structurally characterized complexes are mononuclear zinc compounds with an overall distorted tetrahedral arrangement of the two halide and two oxazoline ligands around the zinc metal centre. The oxazoline series of complexes reported herein show little structural diversity, a facet which is in contrast to their substituted pyridine analogues.Key words: oxazoline, zinc, X-ray crystal structure, coordination complex, NMR spectroscopy, Zn(II).


2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding


2007 ◽  
Vol 11 (04) ◽  
pp. 287-293 ◽  
Author(s):  
Jonathan L. Sessler ◽  
Patricia J. Melfi ◽  
Vincent M. Lynch

The synthesis of an isoamethyrin-type expanded porphyrin bearing both meso- and β-substituents is presented. The diprotonated form of this macrocycle was characterized by conventional spectroscopic means and via a single crystal X-ray diffraction analysis. This species is observed to adopt a planar conformation in the solid state. Nonetheless, the inner ring current, as inferred from 1 H NMR spectroscopic studies, is found to be severely diminished as compared to isoamethyrin, by the presence of the two meso-phenyl moieties. A second crystal structure, in which a molecule of water is hydrogen-bound to a pyrrole NH , was also solved.


2011 ◽  
Vol 66 (7) ◽  
pp. 755-758
Author(s):  
Sari M. Närhi ◽  
Janne Asikkala ◽  
Jatta Kostamo ◽  
Marja K. Lajunen ◽  
Raija Oilunkaniemi ◽  
...  

N,N´-Dipropyl-N,N,N´ ,N´-tetramethyl-1,2-ethylenediammonium dichloride (1) and dibromide (2) were prepared by the reaction of N,N,N´,N´-tetramethyl-1,2-ethylenediamine and the corresponding 1-halopropane. The structures of the compounds were characterized by single-crystal X-ray diffraction. 1 · 2H2O crystallizes in the triclinic crystal system, space group P1, with Z = 1, and 2 in the monoclinic crystal system, space group P21/c, with Z = 2. The crystal structures of the salts consist of discrete dications and halide anions. The packing in 1 · 2H2O consists of layers of cations with the chloride anions and water molecules forming hydrogen-bonded chains between the cation layers. In 2, the strongest H· · ·Br hydrogen bonds of 2.8138(6) and 2.8187(7) °A link the cations and anions into doublestranded chains. In both salts, cations and anions are also linked together by a further weak C-H· · ·Cl/Br hydrogen bonding network.


2004 ◽  
Vol 59 (9) ◽  
pp. 980-984 ◽  
Author(s):  
Daniel Drewes ◽  
Eva Melanie Limanski ◽  
Bernt Krebs

The new polyoxotungstate (NH4)6Na4[Ni4(H2O)2(AsW9O34)2] · 20 H2O (1) was synthesized in aqueous solution and characterized by IR and UV/Vis spectroscopy, energy dispersive X-ray fluorescence and single-crystal X-ray analysis. It contains the tetra-nickel substituted [Ni4(H2O)2(AsW9O34)2]10− polyoxoanion, in which the four Ni atoms are in a common plane and form a regular rhombus. 1 crystallizes in the monoclinic crystal system, space group P21/n with a = 11.849(2), b = 16.718(3), c = 21.243(4) Å , β = 100.48(3)◦, and Z = 2. The anions are linked via hydrogen bonds and sodium cations.


1984 ◽  
Vol 62 (7) ◽  
pp. 1239-1245 ◽  
Author(s):  
Brian R. James ◽  
David Dolphin ◽  
T. W. Leung ◽  
Frederick W. B. Einstein ◽  
Anthony C. Willis

Some ruthenium(III) complexes Ru(porp)(L)X and [Ru(porp)L2]X, (porp = dianion of octaethylporphyrin (OEP) or tetraphenylporphyrin (TPP); L = PPh3, P″Bu3; X = Br, Cl) have been prepared from the precursor complexes Ru(porp)L2 or Ru(porp)(CO)L using as oxidant the halogens, or air in the presence of the hydrogen halides. The X = PF6 salts can be made using Et3O+PF6− as oxidant. Ruthenium(II) porphyrin π-cation radical intermediates have sometimes been detected. The X-ray crystal structure of Ru(OEP)(PPh3)Br, the first reported for a ruthenium(III) porphyrin, reveals that metal is displaced 0.049 Å from the plane of the pyrrole N atoms towards the phosphine. The Ru(OEP)(py) Br and [Ru(OEP)(py)CH3CN]PF6 complexes have been synthesized from Ru(OEP)(CO)py. The ruthenium(III) complexes are low-spin as shown by magnetic and esr data. Optical and 1H nmr data, the latter showing large paramagnetic shifts, are also presented.


Sign in / Sign up

Export Citation Format

Share Document