Investigation on laser-induced oxidation assisted micro-milling of Inconel 718

Author(s):  
Hongjun Xia ◽  
Guolong Zhao ◽  
Maoshun Hu ◽  
Liang Li ◽  
Aqib Mashood Khan ◽  
...  

Poor surface quality and rapid tool wear are the main problems in micro-cutting of Inconel 718. In this study, a novel hybrid machining method named laser-induced oxidation assisted micro-milling is proposed to solve the aforementioned problems. A loose oxide layer and a relatively flat sublayer are formed on the material after laser irradiation. Under optimized laser parameters with a scanning speed of 1 mm/s and an average laser power of 4.5 W, the thicknesses of the oxide layer and the sublayer are 24 and 18 μm, respectively. The influence of cutting parameters on milling force, surface roughness, surface quality, and top burr size is studied in detail. Cutting force and thrust force in the proposed hybrid machining process are lower than those in the conventional micro-milling. Results show that for the investigated range of parameters, the optimal feed per tooth and depth of cut in the hybrid process are 3 μm/z and 3 μm, respectively. When using the optimal parameters, the surface roughness of the machined slot bottom is 108.5 nm. The top burr size on the up-milling side and the down-milling side is 26.8 and 36.2 μm, respectively. In addition, the tool wear mechanism is coating delamination in hybrid process, whereas chipping, coating delamination, tool nose breakage, and adhesion are the main tool wear mechanism in the conventional micro-milling. For the same amount of material removal, the proposed hybrid process can decrease the tool wear and enhance the service life of the micro-end mill as compared to conventional micro-milling.

Author(s):  
Anthony Chukwujekwu Okafor ◽  
Theodore Obumselu Nwoguh

Abstract This paper presents the results of comparative evaluation of soybean oil based MQL oil flow rates at 10, 30, 50, 70, and 90 ml/h with emulsion flood coolant (EC) at 1200 l/h as a benchmark in face milling of Inconel 718 using coated carbide inserts. Resultant cutting force, tool wear/ mechanism, and surface roughness are the machining performance parameters analyzed. The results show that MQL oil flow rate at 70 ml/h gave the least tool wear comparable to that of EC, while 10 ml/h gave the highest tool wear. Also, 70 ml/h gave the lowest resultant cutting force among all MQL flow rates. Increasing soybean oil-based MQL flow rate improves surface roughness and reduces tool wear by providing enough thin lubrication film but also leads to an increase in chip affinity and formation of large built-up-edges (BUEs) as the MQL flow rate reaches 90 ml/h. At lower soybean oil-based MQL flow rate, tool wear mechanism is predominantly abrasion due to large surface friction, while at higher soybean oil-based MQL flow rate, tool wear mechanism is adhesion leading to excessive BUEs. Soybean oil-based MQL flow rate at 70 ml/h is recommended when face milling Inconel 718 and is demonstrated to be a potential replacement of EC for machining difficult-to-cut metal.


Author(s):  
Emel Kuram ◽  
Babur Ozcelik

This study focused on the optimization of micro-milling parameters for two extensively used aerospace materials (titanium and nickel-based superalloy). The experiments were planned using Taguchi experimental design method, and the influences of spindle speed, feed rate and depth of cut on machining outputs, namely, tool wear, surface roughness and cutting forces, were determined. Tool wear, surface roughness and cutting forces measured in micro-milling of Ti6Al4V titanium alloy and Inconel 718 workpiece materials were optimized by employing Taguchi’s signal-to-noise ratio. The percentage contribution of micro-milling parameters, namely, spindle speed, feed rate and depth of cut, on tool wear, surface roughness and cutting forces was indicated by analysis of variance. The regression models identifying the relationship between the input variables and the output responses were also fitted using experimental data to predict output responses without conducting the experiments. Efficiency of regression models was determined using correlation coefficients, and the predicted values were compared with experimental results. From results, it was concluded that the established regression models could be employed for predicting tool wear, surface roughness and cutting forces in micro-milling of Ti6Al4V titanium alloy and Inconel 718 workpiece materials.


2021 ◽  
Vol 2044 (1) ◽  
pp. 012085
Author(s):  
Delong Dong ◽  
Taoyuan Li ◽  
Xiangyu Wang ◽  
Yang Qiao ◽  
Peiquan Guo

2020 ◽  
Author(s):  
Ivan Sunit Rout ◽  
P. Pal Pandian ◽  
Manish Mathew ◽  
Kevin Lobo Ivan ◽  
Shomyajit Misra

2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


Sign in / Sign up

Export Citation Format

Share Document