scholarly journals Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory

Author(s):  
Trung-Kien Nguyen ◽  
Thuc P Vo ◽  
Huu-Tai Thai

An improved transverse shear stiffness for vibration and buckling analysis of functionally graded sandwich plates based on the first-order shear deformation theory is proposed in this paper. The transverse shear stress obtained from the in-plane stress and equilibrium equation allows to analytically derive an improved transverse shear stiffness and associated shear correction factor of the functionally graded sandwich plate. Sandwich plates with functionally graded faces and both homogeneous hardcore and softcore are considered. The material property is assumed to be isotropic at each point and vary through the plate thickness according to a power-law distribution of the volume fraction of the constituents. Equations of motion and boundary conditions are derived from Hamilton’s principle. The Navier-type solutions are obtained for simply supported boundary conditions, and exact formulae are proposed and compared with the existing solutions to verify the validity of the developed model. Numerical results are obtained for simply supported functionally graded sandwich plates made of three sets of material combinations of metal and ceramic, Al/Al2O3, Al/SiC and Al/WC to investigate the effects of the power-law index, thickness ratio of layer, material contrast on the shear correction factors, natural frequencies and critical buckling loads as well as load–frequency curves.

2017 ◽  
Vol 21 (6) ◽  
pp. 1906-1929 ◽  
Author(s):  
Abdelkader Mahmoudi ◽  
Samir Benyoucef ◽  
Abdelouahed Tounsi ◽  
Abdelkader Benachour ◽  
El Abbas Adda Bedia ◽  
...  

In this paper, a refined quasi-three-dimensional shear deformation theory for thermo-mechanical analysis of functionally graded sandwich plates resting on a two-parameter (Pasternak model) elastic foundation is developed. Unlike the other higher-order theories the number of unknowns and governing equations of the present theory is only four against six or more unknown displacement functions used in the corresponding ones. Furthermore, this theory takes into account the stretching effect due to its quasi-three-dimensional nature. The boundary conditions in the top and bottoms surfaces of the sandwich functionally graded plate are satisfied and no correction factor is required. Various types of functionally graded material sandwich plates are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Numerical examples, selected from the literature, are illustrated. A good agreement is obtained between numerical results of the refined theory and the reference solutions. A parametric study is presented to examine the effect of the material gradation and elastic foundation on the deflections and stresses of functionally graded sandwich plate resting on elastic foundation subjected to thermo-mechanical loading.


2020 ◽  
pp. 109963622092508 ◽  
Author(s):  
Atteshamuddin S Sayyad ◽  
Yuwaraj M Ghugal

In this paper, higher order closed-formed analytical solutions for the buckling analysis of functionally graded sandwich rectangular plates are obtained using a unified shear deformation theory. Three-layered sandwich plates with functionally graded skins on top and bottom; and isotropic core in the middle are considered for the study. The material properties of skins are varied through the thickness according to the power-law distribution. Two types of sandwich plates (hardcore and softcore) are considered for the detail numerical study. A unified shear deformation theory developed in the present study uses polynomial and non-polynomial-type shape functions in terms of thickness coordinate to account for the effect of shear deformation. In the present theory, the in-plane displacements consider the combined effect of bending rotation and shear rotation. The parabolic shear deformation theory of Reddy and the first-order shear deformation theory of Mindlin are the particular cases of the present unified formulation. The governing differential equations are evaluated from the principle of virtual work. Closed-formed analytical solutions are obtained by using the Navier’s technique. The non-dimensional critical buckling load factors are obtained for various power-law coefficients, aspect ratios and skin-core-skin thickness ratios.


2016 ◽  
Vol 08 (04) ◽  
pp. 1650049 ◽  
Author(s):  
J. L. Mantari

In this paper, a simple and accurate sinusoidal trigonometric theory (STT) for the bending analysis of functionally graded single-layer and sandwich plates and shells is presented for the first time. The principal feature of this theory is that models the thickness stretching effect with only 4-unknowns, even less than the first order shear deformation theory (FSDT) which as it is well-known has 5-unknowns. The governing equations and boundary conditions are derived by employing the principle of virtual work. Then, a Navier-type closed-form solution is obtained for functionally graded plates and shells subjected to bi-sinusoidal load for simply supported boundary conditions. Consequently, numerical results of the present STT are compared with other refined theories, FSDT, and 3D solutions. Finally, it can be concluded that: (a) An accurate but simple 4-unknown STT with thickness stretching effect is developed for the first time. (b) Optimization procedure (described in the paper) appear to be of paramount importance for 4-unknown higher order shear deformation theories (HSDTs) of this gender, so deserves a lot of further research. (c) Transverse shear stresses results are sensitive to the theory and need carefully attention.


2019 ◽  
Vol 969 ◽  
pp. 116-121
Author(s):  
Ch. Naveen Reddy ◽  
M. Bhargav ◽  
T. Revanth

This work investigates the complete analytical solution for functionally graded material (FGM) plates incorporated with smart material. The odjective of the present work is to determine bending characteristics of piezoelectric FGM plates with different geometrical parameters, voltages and boundary conditions for electro-mechanical loading. In this work an analytical formulation based on higher order shear deformation theory (HSDT) is presented for the piezoelectric FGM plates. The solutions are obtained in closed from using Navier’s technique for piezoelectric FGM plates a specific type of simply supported boundary conditions and pc code have been developed to find out the deflections and stresses for various parameters. All the solutions are plotted against aspect proportion, side to thickness proportion as a function of material variety parameter (n) and thickness coordinate for different voltages. The significant trends from the results are obtained.


2006 ◽  
Vol 324-325 ◽  
pp. 279-282
Author(s):  
K. Gordnian ◽  
H. Hadavinia ◽  
J. Karwatzki

The effect of transverse shear on the deformation of thick laminated sandwich plates under cylindrical bending is studied, based on the first order shear deformation theory (FSDT) with the application of shear correction factor (SCF). It is shown that depending on the mechanical and geometrical properties of the layers, the contribution of the transverse shear stress to the maximum deflection of the plate is variable and in some cases accounts for up to around 88% of the total deflection. The analytical results are compared and verified with finite element analysis.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Atteshamuddin S. Sayyad ◽  
Yuwaraj M. Ghugal

In this paper, a displacement-based unified shear deformation theory is developed for the analysis of shear deformable advanced composite beams and plates. The theory is developed with the inclusion of parabolic (PSDT), trigonometric (TSDT), hyperbolic (HSDT) and exponential (ESDT) shape functions in terms of thickness coordinate to account for the effect of transverse shear deformation. The in-plane displacements consider the combined effect of bending rotation and shear rotation. The use of parabolic shape function in the present theory leads to the Reddy’s theory, but trigonometric, hyperbolic and exponential functions are first time used in the present displacement field. The present theory is accounted for an accurate distribution of transverse shear stresses through the thickness of plate, therefore, it does not require problem dependent shear correction factor. Governing equations and associated boundary conditions of the theory are derived from the principle of virtual work. Navier type closed-form solutions are obtained for simply supported boundary conditions. To verify the global response of the present theory it is applied for the bending of both one-dimensional (beams) and two-dimensional (plates) functionally graded, laminated composite and sandwich structures. The present results are compared with exact elasticity solution and other higher order shear deformation theories to verify the accuracy and efficiency of the present theory.


2020 ◽  
Vol 14 (3) ◽  
pp. 7205-7221
Author(s):  
Hamidreza Talebi Amanieh ◽  
Seyed Alireza Seyed Roknizadeh ◽  
Arash Reza

In this paper, the in-plane and out-of-plane free vibrations of the functionally graded magneto-electro-elastic (FG-MEE) rectangular plate on a pasternak foundation were evaluated based on exponential shear deformation theory (ESDT) and first order shear deformation theory (FSDT). The material properties of FG-MEE varied along the thickness according to a power-law distribution model. It was assumed that the FG-MEE plate is subjected to initial external electrical and magnetic potentials; mreover, simply-supported boundary conditions were considered for all the edges of the FG-MEE plate. Firstly, the corresponding partial differential equations (PDEs) were derived using Hamilton’s principle, then, the natural frequencies were determined by solving the obtained equations through Navier’s approach according to the assumed boundary conditions. The results revealed that the natural frequencies of the plate decrease/increase with the increase of the electric/magnetic potentials. Moreover, the results showed a 0.03%, difference between the natural frequencies of the plate with a thickness-to-length ratio of 0.1 based on FSDT and ESDT; when the aspect ratio was increased to 0.2 and 0.3 this difference rose to 0.2% and 0.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document