Mutually converted arc–line segment-based SLAM with summing parameters

Author(s):  
Rui-Jun Yan ◽  
Jing Wu ◽  
Ming-Lei Shao ◽  
Kyoo-Sik Shin ◽  
Ji-Yeong Lee ◽  
...  

This paper presents a mutually converted arc–line segment-based simultaneous localization and mapping (SLAM) algorithm by distinguishing what we call the summing parameters from other types. These redefined parameters are a combination of the coordinate values of the measuring points. Unlike most traditional features-based simultaneous localization and mapping algorithms that only update the same type of features with a covariance matrix, our algorithm can match and update different types of features, such as the arc and line. For each separated data set from every new scan, the necessary information of the measured points is stored by the small constant number of the summing parameters. The arc and line segments are extracted according to the different limit values but based on the same parameters, from which their covariance matrix can also be computed. If one stored segment matches a new extracted segment successfully, two segments can be merged as one whether the features are the same type or not. The mergence is achieved by only summing the corresponding summing parameters of the two segments. Three simultaneous localization and mapping experiments in three different indoor environments were done to demonstrate the robustness, accuracy, and effectiveness of the proposed method. The data set of the Massachusetts Institute Of Technology (MIT) Computer Science and Artificial Intelligence Laboratory (CSAIL) Building was used to validate that our method has good adaptability.


2020 ◽  
pp. 930-954 ◽  
Author(s):  
Heba Gaber ◽  
Mohamed Marey ◽  
Safaa Amin ◽  
Mohamed F. Tolba

Mapping and exploration for the purpose of navigation in unknown or partially unknown environments is a challenging problem, especially in indoor environments where GPS signals can't give the required accuracy. This chapter discusses the main aspects for designing a Simultaneous Localization and Mapping (SLAM) system architecture with the ability to function in situations where map information or current positions are initially unknown or partially unknown and where environment modifications are possible. Achieving this capability makes these systems significantly more autonomous and ideal for a large range of applications, especially indoor navigation for humans and for robotic missions. This chapter surveys the existing algorithms and technologies used for localization and mapping and highlights on using SLAM algorithms for indoor navigation. Also the proposed approach for the current research is presented.



Author(s):  
N. Botteghi ◽  
B. Sirmacek ◽  
R. Schulte ◽  
M. Poel ◽  
C. Brune

Abstract. In this research, we investigate the use of Reinforcement Learning (RL) for an effective and robust solution for exploring unknown and indoor environments and reconstructing their maps. We benefit from a Simultaneous Localization and Mapping (SLAM) algorithm for real-time robot localization and mapping. Three different reward functions are compared and tested in different environments with growing complexity. The performances of the three different RL-based path planners are assessed not only on the training environments, but also on an a priori unseen environment to test the generalization properties of the policies. The results indicate that RL-based planners trained to maximize the coverage of the map are able to consistently explore and construct the maps of different indoor environments.



Author(s):  
Ebru Sayilgan ◽  
Savas Sahin

In this study, a data set containing normal and different heart beat types recorded by the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) was used for the detection of cardiac dysfunctions. In this data set, features were extracted using the LabVIEW Biomedical Workbench from the normal heartbeat and six different arrhythmia types. Obtained signals were evaluated by using Artificial Neural Network multiple classification method. Classification performances were compared before extracting the feature on the same data set. Classifier performances were evaluated by accuracy, sensitivity and selectivity performances criteria of classification. In the classifier performances, the "Normal" beat rate was found to be 99% accurate with the highest success compared to other arrhythmia types. As a result, both analysis methods are successful, but when the LabVIEW Biomedical Workbench is used, the classification results have achieved higher success.



Author(s):  
Heba Gaber ◽  
Mohamed Marey ◽  
Safaa Amin ◽  
Mohamed F. Tolba

Mapping and exploration for the purpose of navigation in unknown or partially unknown environments is a challenging problem, especially in indoor environments where GPS signals can't give the required accuracy. This chapter discusses the main aspects for designing a Simultaneous Localization and Mapping (SLAM) system architecture with the ability to function in situations where map information or current positions are initially unknown or partially unknown and where environment modifications are possible. Achieving this capability makes these systems significantly more autonomous and ideal for a large range of applications, especially indoor navigation for humans and for robotic missions. This chapter surveys the existing algorithms and technologies used for localization and mapping and highlights on using SLAM algorithms for indoor navigation. Also the proposed approach for the current research is presented.



Author(s):  
Hui Xiong ◽  
Youping Chen ◽  
Xiaoping Li ◽  
Bing Chen

PurposeBecause submaps including a subset of the global map contain more environmental information, submap-based graph simultaneous localization and mapping (SLAM) has been studied by many researchers. In most of those studies, helpful environmental information was not taken into consideration when designed the termination criterion of the submap construction process. After optimizing the graph, cumulative error within the submaps was also ignored. To address those problems, this paper aims to propose a two-level optimized graph-based SLAM algorithm.Design/methodology/approachSubmaps are updated by extended Kalman filter SLAM while no geometric-shaped landmark models are needed; raw laser scans are treated as landmarks. A more reasonable criterion called the uncertainty index is proposed to combine with the size of the submap to terminate the submap construction process. After a submap is completed and a loop closure is found, a two-level optimization process is performed to minimize the loop closure error and the accumulated error within the submaps.FindingsSimulation and experimental results indicate that the estimated error of the proposed algorithm is small, and the maps generated are consistent whether in global or local.Practical implicationsThe proposed method is robust to sparse pedestrians and can be adapted to most indoor environments.Originality/valueIn this paper, a two-level optimized graph-based SLAM algorithm is proposed.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shuhuan Wen ◽  
Kamal Mohammed Othman ◽  
Ahmad B. Rad ◽  
Yixuan Zhang ◽  
Yongsheng Zhao

We present a SLAM with closed-loop controller method for navigation of NAO humanoid robot from Aldebaran. The method is based on the integration of laser and vision system. The camera is used to recognize the landmarks whereas the laser provides the information for simultaneous localization and mapping (SLAM ). K-means clustering method is implemented to extract data from different objects. In addition, the robot avoids the obstacles by the avoidance function. The closed-loop controller reduces the error between the real position and estimated position. Finally, simulation and experiments show that the proposed method is efficient and reliable for navigation in indoor environments.



Author(s):  
Bruno M. F. da Silva ◽  
Rodrigo S. Xavier ◽  
Luiz M. G. Gonçalves

Since it was proposed, the Robot Operating System (ROS) has fostered solutions for various problems in robotics in the form of ROS packages. One of these problems is Simultaneous Localization and Mapping (SLAM), a problem solved by computing the robot pose and a map of its environment of operation at the same time. The increasingly availability of robot kits ready to be programmed and also of RGB-D sensors often pose the question of which SLAM package should be used given the application requirements. When the SLAM subsystem must deliver estimates for robot navigation, as is the case of applications involving autonomous navigation, this question is even more relevant. This work introduces an experimental analysis of GMapping and RTAB-Map, two ROS compatible SLAM packages, regarding their SLAM accuracy, quality of produced maps and use of produced maps in navigation tasks. Our analysis aims ground robots equipped with RGB-D sensors for indoor environments and is supported by experiments conducted on datasets from simulation, benchmarks and from our own robot.



Sign in / Sign up

Export Citation Format

Share Document