scholarly journals Indoor SLAM Using Laser and Camera with Closed-Loop Controller for NAO Humanoid Robot

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shuhuan Wen ◽  
Kamal Mohammed Othman ◽  
Ahmad B. Rad ◽  
Yixuan Zhang ◽  
Yongsheng Zhao

We present a SLAM with closed-loop controller method for navigation of NAO humanoid robot from Aldebaran. The method is based on the integration of laser and vision system. The camera is used to recognize the landmarks whereas the laser provides the information for simultaneous localization and mapping (SLAM ). K-means clustering method is implemented to extract data from different objects. In addition, the robot avoids the obstacles by the avoidance function. The closed-loop controller reduces the error between the real position and estimated position. Finally, simulation and experiments show that the proposed method is efficient and reliable for navigation in indoor environments.

2020 ◽  
pp. 930-954 ◽  
Author(s):  
Heba Gaber ◽  
Mohamed Marey ◽  
Safaa Amin ◽  
Mohamed F. Tolba

Mapping and exploration for the purpose of navigation in unknown or partially unknown environments is a challenging problem, especially in indoor environments where GPS signals can't give the required accuracy. This chapter discusses the main aspects for designing a Simultaneous Localization and Mapping (SLAM) system architecture with the ability to function in situations where map information or current positions are initially unknown or partially unknown and where environment modifications are possible. Achieving this capability makes these systems significantly more autonomous and ideal for a large range of applications, especially indoor navigation for humans and for robotic missions. This chapter surveys the existing algorithms and technologies used for localization and mapping and highlights on using SLAM algorithms for indoor navigation. Also the proposed approach for the current research is presented.


Author(s):  
N. Botteghi ◽  
B. Sirmacek ◽  
R. Schulte ◽  
M. Poel ◽  
C. Brune

Abstract. In this research, we investigate the use of Reinforcement Learning (RL) for an effective and robust solution for exploring unknown and indoor environments and reconstructing their maps. We benefit from a Simultaneous Localization and Mapping (SLAM) algorithm for real-time robot localization and mapping. Three different reward functions are compared and tested in different environments with growing complexity. The performances of the three different RL-based path planners are assessed not only on the training environments, but also on an a priori unseen environment to test the generalization properties of the policies. The results indicate that RL-based planners trained to maximize the coverage of the map are able to consistently explore and construct the maps of different indoor environments.


2019 ◽  
Vol 9 (16) ◽  
pp. 3264 ◽  
Author(s):  
Xujie Kang ◽  
Jing Li ◽  
Xiangtao Fan ◽  
Wenhui Wan

In recent years, low-cost and lightweight RGB and depth (RGB-D) sensors, such as Microsoft Kinect, have made available rich image and depth data, making them very popular in the field of simultaneous localization and mapping (SLAM), which has been increasingly used in robotics, self-driving vehicles, and augmented reality. The RGB-D SLAM constructs 3D environmental models of natural landscapes while simultaneously estimating camera poses. However, in highly variable illumination and motion blur environments, long-distance tracking can result in large cumulative errors and scale shifts. To address this problem in actual applications, in this study, we propose a novel multithreaded RGB-D SLAM framework that incorporates a highly accurate prior terrestrial Light Detection and Ranging (LiDAR) point cloud, which can mitigate cumulative errors and improve the system’s robustness in large-scale and challenging scenarios. First, we employed deep learning to achieve system automatic initialization and motion recovery when tracking is lost. Next, we used terrestrial LiDAR point cloud to obtain prior data of the landscape, and then we applied the point-to-surface inductively coupled plasma (ICP) iterative algorithm to realize accurate camera pose control from the previously obtained LiDAR point cloud data, and finally expanded its control range in the local map construction. Furthermore, an innovative double window segment-based map optimization method is proposed to ensure consistency, better real-time performance, and high accuracy of map construction. The proposed method was tested for long-distance tracking and closed-loop in two different large indoor scenarios. The experimental results indicated that the standard deviation of the 3D map construction is 10 cm in a mapping distance of 100 m, compared with the LiDAR ground truth. Further, the relative cumulative error of the camera in closed-loop experiments is 0.09%, which is twice less than that of the typical SLAM algorithm (3.4%). Therefore, the proposed method was demonstrated to be more robust than the ORB-SLAM2 algorithm in complex indoor environments.


Author(s):  
Heba Gaber ◽  
Mohamed Marey ◽  
Safaa Amin ◽  
Mohamed F. Tolba

Mapping and exploration for the purpose of navigation in unknown or partially unknown environments is a challenging problem, especially in indoor environments where GPS signals can't give the required accuracy. This chapter discusses the main aspects for designing a Simultaneous Localization and Mapping (SLAM) system architecture with the ability to function in situations where map information or current positions are initially unknown or partially unknown and where environment modifications are possible. Achieving this capability makes these systems significantly more autonomous and ideal for a large range of applications, especially indoor navigation for humans and for robotic missions. This chapter surveys the existing algorithms and technologies used for localization and mapping and highlights on using SLAM algorithms for indoor navigation. Also the proposed approach for the current research is presented.


Author(s):  
Rui-Jun Yan ◽  
Jing Wu ◽  
Ming-Lei Shao ◽  
Kyoo-Sik Shin ◽  
Ji-Yeong Lee ◽  
...  

This paper presents a mutually converted arc–line segment-based simultaneous localization and mapping (SLAM) algorithm by distinguishing what we call the summing parameters from other types. These redefined parameters are a combination of the coordinate values of the measuring points. Unlike most traditional features-based simultaneous localization and mapping algorithms that only update the same type of features with a covariance matrix, our algorithm can match and update different types of features, such as the arc and line. For each separated data set from every new scan, the necessary information of the measured points is stored by the small constant number of the summing parameters. The arc and line segments are extracted according to the different limit values but based on the same parameters, from which their covariance matrix can also be computed. If one stored segment matches a new extracted segment successfully, two segments can be merged as one whether the features are the same type or not. The mergence is achieved by only summing the corresponding summing parameters of the two segments. Three simultaneous localization and mapping experiments in three different indoor environments were done to demonstrate the robustness, accuracy, and effectiveness of the proposed method. The data set of the Massachusetts Institute Of Technology (MIT) Computer Science and Artificial Intelligence Laboratory (CSAIL) Building was used to validate that our method has good adaptability.


2018 ◽  
Vol 8 (12) ◽  
pp. 2534 ◽  
Author(s):  
Zhongli Wang ◽  
Yan Chen ◽  
Yue Mei ◽  
Kuo Yang ◽  
Baigen Cai

Generally, the key issues of 2D LiDAR-based simultaneous localization and mapping (SLAM) for indoor application include data association (DA) and closed-loop detection. Particularly, a low-texture environment, which refers to no obvious changes between two consecutive scanning outputs, with moving objects existing in the environment will bring great challenges on DA and the closed-loop detection, and the accuracy and consistency of SLAM may be badly affected. There is not much literature that addresses this issue. In this paper, a mapping strategy is firstly exploited to improve the performance of the 2D SLAM in dynamic environments. Secondly, a fusion method which combines the IMU sensor with a 2D LiDAR, based on framework of extended Kalman Filter (EKF), is proposed to enhance the performance under low-texture environments. In the front-end of the proposed SLAM method, initial motion estimation is obtained from the output of EKF, and it can be taken as the initial pose for the scan matching problem. Then the scan matching problem can be optimized by the Levenberg–Marquardt (LM) algorithm. For the back-end optimization, a sparse pose adjustment (SPA) method is employed. To improve the accuracy, the grid map is updated with the bicubic interpolation method for derivative computing. With the improvements both in the DA process and the back-end optimization stage, the accuracy and consistency of SLAM results in low-texture environments is enhanced. Qualitative and quantitative experiments with open-loop and closed-loop cases have been conducted and the results are analyzed, confirming that the proposed method is effective in low-texture and dynamic indoor environments.


Author(s):  
Hui Xiong ◽  
Youping Chen ◽  
Xiaoping Li ◽  
Bing Chen

PurposeBecause submaps including a subset of the global map contain more environmental information, submap-based graph simultaneous localization and mapping (SLAM) has been studied by many researchers. In most of those studies, helpful environmental information was not taken into consideration when designed the termination criterion of the submap construction process. After optimizing the graph, cumulative error within the submaps was also ignored. To address those problems, this paper aims to propose a two-level optimized graph-based SLAM algorithm.Design/methodology/approachSubmaps are updated by extended Kalman filter SLAM while no geometric-shaped landmark models are needed; raw laser scans are treated as landmarks. A more reasonable criterion called the uncertainty index is proposed to combine with the size of the submap to terminate the submap construction process. After a submap is completed and a loop closure is found, a two-level optimization process is performed to minimize the loop closure error and the accumulated error within the submaps.FindingsSimulation and experimental results indicate that the estimated error of the proposed algorithm is small, and the maps generated are consistent whether in global or local.Practical implicationsThe proposed method is robust to sparse pedestrians and can be adapted to most indoor environments.Originality/valueIn this paper, a two-level optimized graph-based SLAM algorithm is proposed.


Sign in / Sign up

Export Citation Format

Share Document