Spiral bevel gear true tooth surface precise modeling and experiments studies based on machining adjustment parameters

Author(s):  
Mo Shuai ◽  
Zhang Yidu

The true tooth surface of a spiral bevel gear is not the standard spherical involute surface, since the microscopic tooth surface varies according to machining adjustment parameters, with different tooth contact forces, stress distributions, and other intrinsic properties. Therefore, it is necessary to propose the method whose advancement and feasibility can be verified by gear cutting and contact pattern experiments, to obtain a precisely digitized true tooth surface of spiral bevel gear based on machining adjustment parameters, which will lay a solid foundation for subsequent true tooth contact analysis, transmission error analysis, gear cutting, etc.

2013 ◽  
Vol 310 ◽  
pp. 323-327
Author(s):  
Chun Hua Guo ◽  
Wen Tong Yang ◽  
Zhi Feng Liu ◽  
Zhi Min Zhang

The contents of the paper cover tooth contact analysis and optimization of transmission error for Klingelnberg spiral bevel gear. First, the rolling model, tooth contact analysis formulas are derived, contact area and transmission error curve is plotted. Second, the fuzzy optimization method is established to enhance the performance of the gears meshing, the optimization parameters can be confirmed to reduce transmission error. Third, an example of Klingelnberg spiral bevel gear for the illustration of the developed theory is represented.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


Author(s):  
Zongde Fang ◽  
Hongbin Yang ◽  
Yanwei Zhou ◽  
Xiaozhong Deng

Abstract A new approach for optimizing the dynamic behavior of spiral bevel gear drives has been developed. The local synthesis, tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA) techniques were used to constitute the design process with feedback, by which a contact ratio being near 2.0 or 3.0 would be achieved. An improved dynamic behavior of the spiral bevel gear drives under certain operating load or a wide range of load could be obtained.


2010 ◽  
Vol 44-47 ◽  
pp. 3711-3715
Author(s):  
Rui Liang Zhang ◽  
Tie Wang ◽  
Hong Mei Li

Tooth contact analysis is an effective tool for meshing analysis of the double circular arc profile spiral bevel gear (DCAPSBG), as well as the basis for loading tooth contact analysis and finite element analysis. Applying the principle of tooth contact analysis (TCA) and the tooth profile characteristic of the DCAPSBG, this paper introduced and discussed the key contents and method of TCA computer programming for numerical simulation analysis of the transmission meshing quality of DCAPSBG. The TCA program developed in this paper, which had been verified by real examples, provided an effective approach for the design of DCAPSBG.


2014 ◽  
Vol 621 ◽  
pp. 549-557
Author(s):  
Kai Liu ◽  
Bo Liang Xu ◽  
Fang Li ◽  
Yang Wei Wang

Based on spiral bevel gear NC manufacture principle and generating motion of the generating gear and the work gear, the NC generation of spiral bevel gear cutting is realized by means of the vector transformation. As sophisticated calculation of the transformation is hard to implement in each interpolation cycle of NC machining, the coordinated motion of NC coordinate axes is expressed as quintic parametric spline functions, which use the rotation angle of the work gear as the parameter. The constrained optimization method of three design variables is established to obtain contacting points of gear tooth surfaces, which are acquired by solving nonlinear equations sets traditionally. The condition of normal coincidence is simplified and the object function of the equal position vectors of mating gears is established. The contacting points of gear tooth surfaces can be used for tooth contact analysis. The parametric curve interpolator is combined with spiral bevel gear NC machining, and is applied to the self-developed spiral bevel gear NC milling machine to control the gear cutting. Experimental results show that the proposed method is feasible and effective in the control of NC machining for the spiral bevel gear.


1992 ◽  
Vol 114 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


Author(s):  
Masaki Watanabe ◽  
Minoru Maki ◽  
Sumio Hirokawa ◽  
Yasuhiro Kishimoto

This study reports the method of forging of spiral bevel gear. Two ideas for crowning of tooth surface to obtain point contact for forging gears are proposed. By one idea, tooth surface of pinion meshes with the gear tooth surface by conjugate point contact. And the trace of contact points on the gear tooth surface is perpendicular to the lengthwise direction of gear tooth, namely becomes the “square contact” so called in gear technology. The trace can be set arbitrarily on the gear tooth, by setting the pitch point arbitrarily. By another idea, the trace of contact points lies along the tooth trace of the gear tooth. Both ideas proposed in this report, the numerical dataset of teeth surface of pinion and gear are given by the contact lines with the cutter cone. The dataset of teeth surface of pinion and gear are calculated to cut a pair of electrodes of spiral bevel gear. Tooth contacts of proposed gearing are confirmed by the 3D drawing of tooth surfaces. The tooth contact of the master pinion and gear were made and tested by tooth contact testing apparatus. The contact marks coincide well with the theoretical contact pattern estimated by 3D/CAD expression. The good results of running test of the performance of the master gear has been given. The authors completed the forging of spiral bevel gear pairs by two methods proposed in this report.


2011 ◽  
Vol 121-126 ◽  
pp. 3559-3561
Author(s):  
Rui Liang Zhang ◽  
Tie Wang ◽  
Zhi Fei Wu

Tooth contact analysis (TCA) is an effective tool for meshing analysis of the double circular arc profile spiral bevel gear (DCAPSBG), and it is the basis of loading tooth contact analysis and finite element analysis. The TCA application is developed by Visual Basic and MATLAB mixed programming method, this paper compared the results of the TCA application analysis with the results of contact area check experiment on one pair of gears with given parameters. The TCA application had been verified by real experiment, this provided an effective approach for the design of DCAPSBG.


Sign in / Sign up

Export Citation Format

Share Document