conjugate point
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Michel Parrot ◽  
Frantisěk Němec ◽  
Morris B. Cohen ◽  
Mark Gołkowski

AbstractA spectrogram of Power Line Harmonic Radiation (PLHR) consists of a set of lines with frequency spacing corresponding exactly to 50 or 60 Hz. It is distinct from a spectrogram of Magnetospheric Line Radiation (MLR) where the lines are not equidistant and drift in frequency. PLHR and MLR propagate in the ionosphere and the magnetosphere and are recorded by ground experiments and satellites. If the source of PLHR is evident, the origin of the MLR is still under debate and the purpose of this paper is to understand how MLR lines are formed. The ELF waves triggered by High-frequency Active Auroral Research Program (HAARP) in the ionosphere are used to simulate lines (pulses of different lengths and different frequencies). Several receivers are utilized to survey the propagation of these pulses. The resulting waves are simultaneously recorded by ground-based experiments close to HAARP in Alaska, and by the low-altitude satellite DEMETER either above HAARP or its magnetically conjugate point. Six cases are presented which show that 2-hop echoes (pulses going back and forth in the magnetosphere) are very often observed. The pulses emitted by HAARP return in the Northern hemisphere with a time delay. A detailed spectral analysis shows that sidebands can be triggered and create elements with superposed frequency lines which drift in frequency during the propagation. These elements acting like quasi-periodic emissions are subjected to equatorial amplification and can trigger hooks and falling tones. At the end all these known physical processes lead to the formation of the observed MLR by HAARP pulses. It is shown that there is a tendency for the MLR frequencies of occurrence to be around 2 kHz although the exciting waves have been emitted at lower and higher frequencies. Graphical Abstract


2021 ◽  
Vol 44 ◽  
pp. 63-66
Author(s):  
V.B. Belakhovsky ◽  
◽  
V.A. Pilipenko ◽  
K. Shiokawa ◽  
Y. Miyoshi ◽  
...  

The physical nature of Pg (pulsation giant) pulsations, which were observed in the magnetosphere by the Japanese satellite Arase, geostationary satellites GOES, and ground stations of the THEMIS and CARISMA networks, was investigated in this work. Pg pulsations belong to the Pc4 frequency range and are characterized by a very monochromatic shape. For the event on 5 June, 2018, according to the data from the Arase satellite, the Pg pulsation wave packet was recorded in the dawn sector during 3 hours. The pulsations are most pronounced in the radial component of the geomagnetic field, their frequency was about 11 mHz. Pg pulsations observed in the magnetosphere were accompanied by pulsations with the same period according to data from a number of ground-based magnetic stations located near the conjugate point. According to the data of ground stations, the pulsations were most strongly expressed in the Y-component of the geomagnetic field. Pg pulsations were accompanied by pulsations in electron and proton fluxes according to the Arase, GOES satellite observations. There are no clear phase relationships between geomagnetic pulsations and pulsations in charge particle fluxes. Pg pulsations were excited under quiet geomagnetic conditions (SYM-H = -10 nT, AE = 100-400 nT) on the recovery phase of the small geomagnetic storm. It is assumed that the expansion of the plasmasphere at low geomagnetic activity leads to an increase in the plasma density in the region of the geostationary orbit, which creates favorable conditions for the excitation of Pg pulsations due to the drift-bounce resonance of protons with the geomagnetic field lines oscillations in the magnetosphere.


Author(s):  
Colin Guillarmou ◽  
Matti Lassas ◽  
Leo Tzou

Abstract In this article, we study the properties of the geodesic X-ray transform for asymptotically Euclidean or conic Riemannian metrics and show injectivity under non-trapping and no conjugate point assumptions. We also define a notion of lens data for such metrics and study the associated inverse problem.


2020 ◽  
Vol 12 (18) ◽  
pp. 2940
Author(s):  
Jaehong Oh ◽  
Youkyung Han

Kompsat-3/3A provides along-track and across-track stereo data for accurate three-dimensional (3D) topographic mapping. Stereo data preprocessing involves conjugate point extraction and acquisition of ground control points (GCPs), rational polynomial coefficient (RPC) bias compensation, and epipolar image resampling. Applications where absolute positional accuracy is not a top priority do not require GCPs, but require precise conjugate points from stereo images for subsequent RPC bias compensation, i.e., relative orientation. Conjugate points are extracted between the original stereo data using image-matching methods by a proper outlier removal process. Inaccurate matching results and potential outliers produce geometric inconsistency in the stereo data. Hence, the reliability of conjugate point extraction must be improved. For this purpose, we proposed to apply the coarse epipolar resampling using raw RPCs before the conjugate point matching. We expect epipolar images with even inaccurate RPCs to show better stereo similarity than the original images, providing better conjugate point extraction. To this end, we carried out the quantitative analysis of the conjugate point extraction performance by comparing the proposed approach using the coarsely epipolar resampled images to the traditional approach using the original stereo images. We tested along-track Kompsat-3 stereo and across-track Kompsat-3A stereo data with four well-known image-matching methods: phase correlation (PC), mutual information (MI), speeded up robust features (SURF), and Harris detector combined with fast retina keypoint (FREAK) descriptor (i.e., Harris). These matching methods were applied to the original stereo images and coarsely resampled epipolar images, and the conjugate point extraction performance was investigated. Experimental results showed that the coarse epipolar image approach was very helpful for accurate conjugate point extraction, realizing highly accurate RPC refinement and sub-pixel y-parallax through fine epipolar image resampling, which was not achievable through the traditional approach. MI and PC provided the most stable results for both along-track and across-track test data with larger patch sizes of more than 400 pixels.


2020 ◽  
Vol 40 (20) ◽  
pp. 2022002
Author(s):  
赵鹏玮 Zhao Pengwei ◽  
戚丽丽 Qi Lili ◽  
张金平 Zhang Jinping ◽  
郑列华 Zheng Liehua

2019 ◽  
Vol 11 (23) ◽  
pp. 2737 ◽  
Author(s):  
Minsu Kim ◽  
Seonkyung Park ◽  
Jeffrey Danielson ◽  
Jeffrey Irwin ◽  
Gregory Stensaas ◽  
...  

The traditional practice to assess accuracy in lidar data involves calculating RMSEz (root mean square error of the vertical component). Accuracy assessment of lidar point clouds in full 3D (three dimension) is not routinely performed. The main challenge in assessing accuracy in full 3D is how to identify a conjugate point of a ground-surveyed checkpoint in the lidar point cloud with the smallest possible uncertainty value. Relatively coarse point-spacing in airborne lidar data makes it challenging to determine a conjugate point accurately. As a result, a substantial unwanted error is added to the inherent positional uncertainty of the lidar data. Unless we keep this additional error small enough, the 3D accuracy assessment result will not properly represent the inherent uncertainty. We call this added error “external uncertainty,” which is associated with conjugate point identification. This research developed a general external uncertainty model using three-plane intersections and accounts for several factors (sensor precision, feature dimension, and point density). This method can be used for lidar point cloud data from a wide range of sensor qualities, point densities, and sizes of the features of interest. The external uncertainty model was derived as a semi-analytical function that takes the number of points on a plane as an input. It is a normalized general function that can be scaled by smooth surface precision (SSP) of a lidar system. This general uncertainty model provides a quantitative guideline on the required conditions for the conjugate point based on the geometric features. Applications of the external uncertainty model were demonstrated using various lidar point cloud data from the U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) library to determine the valid conditions for a conjugate point from three-plane modeling.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 355 ◽  
Author(s):  
Mei Li ◽  
Jun Lu ◽  
Xuemin Zhang ◽  
Xuhui Shen

A large number of various precursors have been reported since the Wenchuan MS 8.0 earthquake (EQ) took place on 12 May 2008 in China. In this work, previous investigations of both ground-based electromagnetic (EM) parameters and spatial ionospheric parameters were first examined. The statistical results showed that various anomalies presented different time-scale variations but tended to be characterized by a common feature – reaching their climax on 9 May, three days before the Wenchuan event, which indicates a lithosphere–atmosphere–ionosphere (LAI) electromagnetic coupling. Second, the fluctuations on 9 May based on the observational ground-based ultra low frequency (ULF) electrical field at the Gaobeidian (GBD) station and the direct current/ultra low frequency (DC–ULF) geomagnetic vertical Z field at the Chengdu (CD) station were comparably analyzed with those of ionospheric disturbances reported previously. The results showed that distinct electromagnetic changes, geomagnetic “double low-point” phenomena, and ionospheric disturbances above both sides of the Earth started in turn, respectively, but reached their climax simultaneously within dozens of hours on 9 May. This evolutionary process increases the probability that electromagnetic energy propagates from the epicentral area, via the atmosphere and ionosphere, to the equatorial plane, and through this plane finally to its magnetically conjugated area in the opposite hemisphere, causing electromagnetic disturbances on the Earth’s surface, in the atmosphere, and in the ionosphere and its conjugate point, in that order.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843010 ◽  
Author(s):  
Sam R. Dolan

The geometrical-optics expansion reduces the problem of solving wave equations to one of the solving transport equations along rays. Here, we consider scalar, electromagnetic and gravitational waves propagating on a curved spacetime in general relativity. We show that each is governed by a wave equation with the same principal part. It follows that: each wave propagates at the speed of light along rays (null generators of hypersurfaces of constant phase); the square of the wave amplitude varies in inverse proportion to the cross-section of the beam; and the polarization is parallel-propagated along the ray (the Skrotskii/Rytov effect). We show that the optical scalars for a beam, and various Newman–Penrose scalars describing a parallel-propagated null tetrad, can be found by solving transport equations in a second-order formulation. Unlike the Sachs equations, this formulation makes it straightforward to find such scalars beyond the first conjugate point of a congruence, where neighboring rays cross, and the scalars diverge. We discuss differential precession across the beam which leads to a modified phase in the geometrical-optics expansion.


Sign in / Sign up

Export Citation Format

Share Document