Static analysis of functionally graded plates with a porous middle layer based on higher order shear deformation theory with linear/quadratic transverse displacement

Author(s):  
Nadiia Dergachova ◽  
Guangping Zou ◽  
Zhongliang Chang

In this article, we present an analytical solution for an imperfect functionally graded plate based on higher order shear deformation theory with cubic variation of in-plane displacements according to thickness and linear/quadratic transverse displacement. The developed solution is used to analyze the static responses of a plate with a porous layer to mechanical loading. Two porosity types and their influences on material properties, displacement, and stress behaviors are considered. The network of pores is assumed to be empty or filled with low-pressure air, and the material properties are calculated using power-law distribution idealization in terms of the volume fractions of constituents. The computed results are presented to illustrate the accuracy of the proposed solutions based on comparisons to previously reported analytical and numerical solutions in the literature. We also analyzed the effects of different volume fractions and thicknesses of porous layers on the mechanical loading and mechanical behavior of the imperfect functionally graded plate.

2020 ◽  
Vol 10 (12) ◽  
pp. 4190
Author(s):  
Aleksandar Radaković ◽  
Dragan Čukanović ◽  
Gordana Bogdanović ◽  
Milan Blagojević ◽  
Blaža Stojanović ◽  
...  

Functionally graded square and rectangular plates of different thicknesses placed on the elastic foundation modeled according to the Winkler-Pasternak theory have been studied. The thermal and mechanical characteristics, apart from Poisson’s ratio, are considered to continuously differ through the thickness of the studied material as stated in a power-law distribution. A mathematical model of functionally graded plate which include interaction with elastic foundation is defined. The equilibrium and stability equations are derived using high order shear deformation theory that comprises various kinds of shape function and the von Karman nonlinearity. A new analytically integrable shape function has been introduced. Hamilton’s principle has been applied with the purpose of acquiring the equations of motion. An analytical method for identifying both natural frequencies and critical buckling temperature for cases of linear and nonlinear temperature change through the plate thickness has been established. In order to verify the derived theoretical results on numerical examples, an original program code has been implemented within software MATLAB. Critical buckling temperature and natural frequencies findings are shown below. Previous scientific research and papers confirms that presented both the theoretical formulation and the numerical results are accurate. The comparison has been made between newly established findings based on introduced shape function and the old findings that include 13 different shape functions available in previously published articles. The final part of the research provides analysis and conclusions related to the impact of the power-law index, foundation stiffness, and temperature gradient on critical buckling temperature and natural frequencies of the functionally graded plates.


2014 ◽  
Vol 11 (06) ◽  
pp. 1350098 ◽  
Author(s):  
ABDERRAHMANE SAID ◽  
MOHAMMED AMEUR ◽  
ABDELMOUMEN ANIS BOUSAHLA ◽  
ABDELOUAHED TOUNSI

An improved simple hyperbolic shear deformation theory involving only four unknown functions, as against five functions in case of first or other higher-order shear deformation theories, is introduced for the analysis of functionally graded plates resting on a Winkler–Pasternak elastic foundation. The governing equations are derived by employing the principle of virtual work and the physical neutral surface concept. The accuracy of the present analysis is demonstrated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories.


Sign in / Sign up

Export Citation Format

Share Document