An adaptive-prediction-horizon model prediction control for path tracking in a four-wheel independent control electric vehicle

Author(s):  
Bing Zhang ◽  
Changfu Zong ◽  
Guoying Chen ◽  
Guiyuan Li

An adaptive-prediction-horizon model prediction control-based path tracking controller for a four-wheel independent control electric vehicle is designed. Unlike traditional model prediction control with fixed prediction horizon, this paper devotes to satisfy the varied path tracking demand by adjusting online the prediction horizon of model prediction control according to its effect on vehicle dynamic characteristics. Vehicle dynamic stability quantized with the vehicle sideslip-feature phase plane is preferentially considered in the prediction horizon adjustment. For stability during switching prediction horizon and for robustness during path tracking, the numerical problem inherent in the adaptive-prediction-horizon model prediction control is analysed and solved by introducing exponentially decreasing weight. Subsequently, the desired motion for path tracking with the four-wheel independent control electric vehicle is realized with a hierarchical control structure. Simulation results finally illustrate the effectiveness of the proposed method.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Weiwei Xin ◽  
Weiguang Zheng ◽  
Jirong Qin ◽  
Shangjun Wei ◽  
Chunyu Ji

Energy management strategies can improve fuel cell hybrid electric vehicles’ dynamic and fuel economy, and the strategies based on model prediction control show great advantages in optimizing the power split effect and in real time. In this paper, the influence of prediction horizon on prediction error, fuel consumption, and real time was studied in detail. The framework of energy management strategy was proposed in terms of the model prediction control theory. The radial basis function neural network was presented as the predictor to obtain the short-term velocity in the future. A dynamic programming algorithm was applied to obtain optimized control laws in the prediction horizon. Considering the onboard controller’s real-time performance, we established a simple fuel cell vehicle mathematical model for simulation. Different prediction horizons were adopted on UDDS and HWFET to test the influence on prediction and energy management strategy. Simulation results showed the strategy performed well in fuel economy and real-time performance, and the prediction horizon of around 20 s was appropriate for this strategy.


Sign in / Sign up

Export Citation Format

Share Document