Numerical assessment of occupant responses during the bus rollover test: A finite element parametric study

Author(s):  
MohammadReza Seyedi ◽  
Sungmoon Jung

Rollover crashes of buses are usually associated with multiple impacts that can result in complex interactions between passengers and a bus superstructure. Although there have been a few field data studies that provide some insights into occupant injuries (e.g. severity and distribution of injuries) during the real-world bus rollover crash, because they had used post-crash data, the occupant kinematics and injury mechanisms were not completely detailed in their results. Based on a literature review, available numerical and experimental studies on a bus rollover safety have mainly focused on structural integrity rather than considering occupant responses in their assessment. In addition, their results about occupant responses in bus rollover crashes show some discrepancies in terms of the estimated injury distribution, severity, and causes. Therefore, the main objective of this study was to provide a more detailed understanding of the occupant kinematics and associated injury risk during the ECE R66 tilt table bus rollover test using validated finite element (FE) models. The ECE R66 tilt table rollover was simulated using a full finite element model of the bus. A 50th percentile male Hybrid III Anthropomorphic test device (ATD) and EuroSID-2re FE models were selected to simulate the occupant’s motion. Each ATD was seated adjacent to the impacted side wall and restrained with a 2-point seatbelt. Simulation parameters included two impact surface friction values and different side window conditions. The results indicated that both ATD estimated the highest injury risk when the partial ejection occurred. They predicted a similar injury risk for the head and thorax. The ES-2re estimated a very low risk of neck injury in all simulations, whereas the Hybrid III estimated the high risk of a neck injury. Finally, recommendations to potentially reduce the injuries were provided and possible future works were suggested.

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Derek A. Jones ◽  
James P. Gaewsky ◽  
Mona Saffarzadeh ◽  
Jacob B. Putnam ◽  
Ashley A. Weaver ◽  
...  

The use of anthropomorphic test devices (ATDs) for calculating injury risk of occupants in spaceflight scenarios is crucial for ensuring the safety of crewmembers. Finite element (FE) modeling of ATDs reduces cost and time in the design process. The objective of this study was to validate a Hybrid III ATD FE model using a multidirection test matrix for future spaceflight configurations. Twenty-five Hybrid III physical tests were simulated using a 50th percentile male Hybrid III FE model. The sled acceleration pulses were approximately half-sine shaped, and can be described as a combination of peak acceleration and time to reach peak (rise time). The range of peak accelerations was 10–20 G, and the rise times were 30–110 ms. Test directions were frontal (−GX), rear (GX), vertical (GZ), and lateral (GY). Simulation responses were compared to physical tests using the correlation and analysis (CORA) method. Correlations were very good to excellent and the order of best average response by direction was −GX (0.916±0.054), GZ (0.841±0.117), GX (0.792±0.145), and finally GY (0.775±0.078). Qualitative and quantitative results demonstrated the model replicated the physical ATD well and can be used for future spaceflight configuration modeling and simulation.


Author(s):  
Anand Hammad ◽  
Anil Kalra ◽  
Prashant Khandelwal ◽  
Xin Jin ◽  
King H. Yang

Injuries to the upper extremities that are caused by dynamic impacts in crashes, including contact with internal instrument panels, has been a major concern, especially for smaller female occupants, and the problem worsens with increasing age due to reduced strength of the bones. From the analysis of 1988–2010 CDS unweighted data, it was found that risk of AIS ≥ 2 level for the arm was 58.2±20.6 percent higher in females than males, and the injury risk for a 75-year-old female occupant relative to a 21-year-old subjected to a similar physical insult was 4.2 times higher. Although injuries to upper extremities are typically not fatal, they can have long-term effects on overall quality of life. Therefore, it is important to minimize risks of injuries related to upper extremities, especially for elderly females, who are most at risk. Current anthropomorphic surrogates, like crash-test dummies, cannot be directly used to study injury limits, as these dummies were developed mainly to represent the younger population. The current study is focused on the development of a finite element (FE) model representing the upper extremity of an elderly female. This can be further used to analyze the injury mechanisms and tolerance limits for this vulnerable population. The FE mesh was developed through Computer Tomography (CT) scanned images of an elderly female cadaver, and the data included for validation of the developed model were taken from the experimental studies published in scientific literature, but only the data directly representing elderly females were used. It was found that the developed model could predict fractures in the long bones of elderly female specimens and could be further used for analyzing injury tolerances for this population. Further, it was determined that the developed segmental model could be integrated with the whole body FE model of the elderly female.


2009 ◽  
Vol 37 (7) ◽  
pp. 1403-1414 ◽  
Author(s):  
B. Fréchède ◽  
A. McIntosh ◽  
R. Grzebieta ◽  
M. Bambach

2012 ◽  
Vol 116 (5) ◽  
pp. 1070-1080 ◽  
Author(s):  
Adam J. Bartsch ◽  
Edward C. Benzel ◽  
Vincent J. Miele ◽  
Douglas R. Morr ◽  
Vikas Prakash

Object In spite of ample literature pointing to rotational and combined impact dosage being key contributors to head and neck injury, boxing and mixed martial arts (MMA) padding is still designed to primarily reduce cranium linear acceleration. The objects of this study were to quantify preliminary linear and rotational head impact dosage for selected boxing and MMA padding in response to hook punches; compute theoretical skull, brain, and neck injury risk metrics; and statistically compare the protective effect of various glove and head padding conditions. Methods An instrumented Hybrid III 50th percentile anthropomorphic test device (ATD) was struck in 54 pendulum impacts replicating hook punches at low (27–29 J) and high (54–58 J) energy. Five padding combinations were examined: unpadded (control), MMA glove–unpadded head, boxing glove–unpadded head, unpadded pendulum–boxing headgear, and boxing glove–boxing headgear. A total of 17 injury risk parameters were measured or calculated. Results All padding conditions reduced linear impact dosage. Other parameters significantly decreased, significantly increased, or were unaffected depending on padding condition. Of real-world conditions (MMA glove–bare head, boxing glove–bare head, and boxing glove–headgear), the boxing glove–headgear condition showed the most meaningful reduction in most of the parameters. In equivalent impacts, the MMA glove–bare head condition induced higher rotational dosage than the boxing glove–bare head condition. Finite element analysis indicated a risk of brain strain injury in spite of significant reduction of linear impact dosage. Conclusions In the replicated hook punch impacts, all padding conditions reduced linear but not rotational impact dosage. Head and neck dosage theoretically accumulates fastest in MMA and boxing bouts without use of protective headgear. The boxing glove–headgear condition provided the best overall reduction in impact dosage. More work is needed to develop improved protective padding to minimize linear and rotational impact dosage and develop next-generation standards for head and neck injury risk.


Author(s):  
Chandrashekhar K. Thorbole ◽  
Stephen A. Batzer ◽  
David A. Renfroe

Roof intrusion is a major cause of neck injury to belted occupants during rollover accidents. The correlation of reduced head room with increased injury risk has been demonstrated by the National Highway Traffic Safety Administration (NHTSA) and others such as the Insurance Institute of Highway Safety (IIHS). The current FMVSS 216 standard requires the vehicle roof, when loaded with a platen of prescribed geometry and application vector, to resist 1.5 times the vehicle empty weight before deforming 127mm. This standard was developed to ensure a modest level of safety of the vehicle in rollover. This paper demonstrates the relation between roof intrusions, available head room and belt pretension on occupant neck loads. A validated finite element model of a 2001 Ford Taurus is used to conduct an inverted drop simulation. The vehicle’s roof impacts an ideally rigid surface with 5 deg of roll and 10 deg of pitch. A 95th percentile Hybrid III ATD (Anthropomorphic Test Device) is used to simulate a large occupant. The simulations are conducted both for a production roof and a modified stiffer, stronger roof. The production roof is modified by addition of extra material in the B-pillars and A-pillars to enhance strength. A seatbelt pretensioner is also modeled to demonstrate the effectiveness of belt pretension in attenuating neck loads. This study demonstrates the inadequate performance of the subject production roof in preventing neck injury. The stronger roof in association with the belt pretensioner reduces the magnitude of the neck loads sufficiently to prevent injury. This study indicates that strong, non-deforming roofs along with belt pretension diminishes neck injury.


Author(s):  
Kenneth J. Saczalski ◽  
Mark C. Pozzi ◽  
Joseph Lawson Burton

This study demonstrates the use of efficient inferred statistical “factorial methods” for scientifically evaluating, with a relatively few tests, the rear-impact occupant “head and neck injury risk” performance of 2 different types of vehicle front seats, with adjustable headrests, when various size occupants are subjected to high and low impact severities. The 2 seat types studied included the stronger “belt-integrated seat” (BIS) designs, with restraints attached and having strength levels beyond 14 kN, and the more common but weaker single recliner (SR) seats, without attached restraints and having only about 3.2 kN strength. Sled-body-buck systems and full vehicle to barrier tests were run with “matched pairs” of surrogates in the 2 seat types at speed changes of 12.5 to 50 kph. Three sizes of Hybrid-III adult surrogates (i.e. 52 kg small female, 80 kg average male, and an average male surrogate ballasted to about 110 kg) were used in the evaluations. Also, some tests were run with 6 year-old Hybrid-III child surrogates located behind the front seats due to interest in potential child injury from collapsing front seats. The 2-level factorial method, combined with a biomechanical ratio comparison and a “student-t” test evaluation, were used to compare safety performance of the 2 seat designs. The resulting data analysis indicates that, in the mid to high range of rear impact severity (i.e. 20 to 50 kph), the stronger BIS seat systems tend to provide greatly improved “head-neck” protection over the weaker SR type seats for both the front seated adult occupants and rear seated children. At the low range of impact severity (i.e. 12.5 to 19 kph) there was no significant statistical difference between either seat types, except that the headrests of both could be improved.


Author(s):  
Mohammad Nasim ◽  
Alessandro Cernicchi ◽  
Ugo Galvanetto

Head-first compressive impacts occur in motorcycle crashes and may result in serious to fatal neck injuries to riders. Equipment to protect the riders’ necks from these injuries are available in the market; however, their effectiveness in reducing injury risk is not clear, either due to the lack of scientific evidences or assessment with any prevalently accepted standard. This paper presents a finite element ligamentous neck model, developed as a computationally efficient tool, for future use in the computational phase of assessment process of neck protective equipment. The 3D cervical spine was generated using the mean statistical dimensions of vertebrae and proposed constitutive models, provided in the scientific literature. Ligaments, for the vertebra-vertebra and Hybrid III head–vertebra ligamentous joints, were introduced with the aid of published anatomical descriptions. For validation, the response of the head-neck system under compressive loadings and the flexion-extension bending stiffness of the neck at the segment level were compared against experimental data. The advanced CORrelation and Analysis (CORA) algorithm was applied on the validation responses to assess biofidelity of the model. The results indicate that the model is functional and meets ISO/TR9790 standard as a “good” biofidelic model.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


2016 ◽  
Vol 61 (1) ◽  
pp. 149-152 ◽  
Author(s):  
L.W. Żukowska ◽  
A. Śliwa ◽  
J. Mikuła ◽  
M. Bonek ◽  
W. Kwaśny ◽  
...  

The general topic of this paper is the computer simulation with use of finite element method (FEM) for determining the internal stresses of selected gradient and single-layer PVD coatings deposited on the sintered tool materials, including cemented carbides, cermets and Al2O3+TiC type oxide tool ceramics by cathodic arc evaporation CAE-PVD method. Developing an appropriate model allows the prediction of properties of PVD coatings, which are also the criterion of their selection for specific items, based on the parameters of technological processes. In addition, developed model can to a large extent eliminate the need for expensive and time-consuming experimental studies for the computer simulation. Developed models of internal stresses were performed with use of finite element method in ANSYS environment. The experimental values of stresses were calculated using the X-ray sin2ψ technique. The computer simulation results were compared with the experimental results. Microhardness and adhesion as well as wear range were measured to investigate the influence of stress distribution on the mechanical and functional properties of coatings. It was stated that occurrence of compressive stresses on the surface of gradient coating has advantageous influence on their mechanical properties, especially on microhardness. Absolute value reduction of internal stresses in the connection zone in case of the gradient coatings takes profitably effects on improvement the adhesion of coatings. It can be one of the most important reasons of increase the wear resistance of gradient coatings in comparison to single-layer coatings.


Sign in / Sign up

Export Citation Format

Share Document