Torque allocation strategy for four in-wheel-motor drive electric vehicle based on layered control

Author(s):  
Wuwei Chen ◽  
Linfeng Zhao ◽  
Jinfang Hu ◽  
Dongkui Tan ◽  
Xiaowen Sun

The differential torque of four in-wheel-motor drive electric automotive will affect vehicle stability, and applications of the differential driven assisting steering (DDAS) will be limited consequentially. To solve this problem, stability analysis and control system design is essential, therefore a DDAS stability control system is designed based on the layered control of yaw moment. Correlation functions are used to reflect the shifts of vehicle characteristic state between stable and unstable states, and help to determine the control weight of each subsystem in the lower-layer controller. In the lower-layer controller, the strategy of direct steering-wheel torque control is used to build a DDAS controller. Under different vehicle moving states, differential driving torque and yaw moment vary with the change of the control weights; and according to the theory of quadratic programming, optimal allocation of four-wheel driving torques will be made according to the total driving torque. The effectiveness of the proposed control system is verified by numerical simulation and hardware-in-the-loop experiment. The results show that the proposed control method can improve vehicle stability and ensure driving safety.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shu Wang ◽  
Xuan Zhao ◽  
Qiang Yu

Vehicle stability control should accurately interpret the driving intention and ensure that the actual state of the vehicle is as consistent as possible with the desired state. This paper proposes a vehicle stability control strategy, which is based on recognition of the driver’s turning intention, for a dual-motor drive electric vehicle. A hybrid model consisting of Gaussian mixture hidden Markov (GHMM) and Generalized Growing and Pruning RBF (GGAP-RBF) neural network is constructed to recognize the driver turning intention in real time. The turning urgency coefficient, which is computed on the basis of the recognition results, is used to establish a modified reference model for vehicle stability control. Then, the upper controller of the vehicle stability control system is constructed using the linear model predictive control theory. The minimum of the quadratic sum of the working load rate of the vehicle tire is taken as the optimization objective. The tire-road adhesion condition, performance of the motor and braking system, and state of the motor are taken as constraints. In addition, a lower controller is established for the vehicle stability control system, with the task of optimizing the allocation of additional yaw moment. Finally, vehicle tests were carried out by conducting double-lane change and single-lane change experiments on a platform for dual-motor drive electric vehicles by using the virtual controller of the A&D5435 hardware. The results show that the stability control system functions appropriately using this control strategy and effectively improves the stability of the vehicle.


2011 ◽  
Vol 383-390 ◽  
pp. 1326-1332 ◽  
Author(s):  
Zhe Xu ◽  
Min Xiang Wei ◽  
Yang Wang ◽  
Jian Wei Wei

Vehicle running at high speed if affected by crosswind or steering handling may spin or drift out since the yaw moment produced is not big enough to stabilize it. In order to prevent these dangerous situations, a fuzzy direct yaw moment controller is designed in this paper, since it is simple and suitable for nonlinear system. This vehicle stability control system is based on model following control method. The side slip angle and yaw rate which indicate the vehicle’s stability and handling performance are chosen as the control variables. The response of the bicycle model is selected as the reference value. In order to evaluate the performance of the controller, simulations of lane change and J-turn maneuver are carried out. The results show that the stability and handling performance of the vehicle are improved.


Author(s):  
Wang Wenwei ◽  
Zhang Wei ◽  
Zhang Hanyu ◽  
Cao Wanke

This paper describes a novel yaw stability control strategy for a four-wheel-independent-drive electric articulated bus with four motors at the middle and rear wheels. The proposed control strategy uses a hierarchical control architecture. In the upper layer, a 3 degree-of-freedom reference model is established to obtain the desired vehicle states and the desired yaw moments of the front and rear compartments are determined by means of sliding mode control, respectively. The lower layer distributes differential longitudinal forces according to the desired yaw moments based on quadratic programming theory. The tire utilization rate is used as the optimization goal considering the actual constraints. To verify performance, three test cases are designed on the dSPACE-ASM simulation platform. The test results show the proposed control strategy can improve the yaw stability and the trajectory following performance of the bus under different driving conditions.


2013 ◽  
Vol 658 ◽  
pp. 602-608 ◽  
Author(s):  
Cheng Lin ◽  
Chun Lei Peng

This paper presents the design of mixed H∞/H2Output Feedback Controller for Independent Drive Electric Vehicle Stability Control. It generates yaw moment by applying driving intervention at front Independent driving wheels according to the vehicle states. The performance of the proposed controller is evaluated through a series of simulations under different velocity and different mass. The simulation results show that the controller can help vehicle against a certain range of uncertainty (speeds and loads) and get excellent robust performance.


2013 ◽  
Vol 415 ◽  
pp. 578-581
Author(s):  
Xiao Jun Ma ◽  
Jian Qiang Su ◽  
Yu Xiang ◽  
Xiang Pu Ji ◽  
Ming Jie Hou

Aiming at the steering special requirement of in-wheel motor drive wheeled vehicle, the dual-steering control is adopted. The target of control system is the vehicle yaw rate, and active disturbance rejection controller is designed. Yaw moment torque is produced by adjusting the both sides of motor torque output to achieve the target of reference yaw rate. The vehicle kinetics model is built in the Adams, and the co-simulation model is designed base on the Adams and Matlab. The results of simulation demonstrate that the dual-steering control increased the vehicle outboard power output and decreased the steering radius, and improve the steering agility of the vehicle.


2004 ◽  
Author(s):  
Masaru Nagao ◽  
Hikaru Watanabe ◽  
Eiichi Nakatani ◽  
Kouji Shirai ◽  
Kouji Aoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document