Yaw stability control through independent driving torque control of mid and rear wheels of an articulated bus

Author(s):  
Wang Wenwei ◽  
Zhang Wei ◽  
Zhang Hanyu ◽  
Cao Wanke

This paper describes a novel yaw stability control strategy for a four-wheel-independent-drive electric articulated bus with four motors at the middle and rear wheels. The proposed control strategy uses a hierarchical control architecture. In the upper layer, a 3 degree-of-freedom reference model is established to obtain the desired vehicle states and the desired yaw moments of the front and rear compartments are determined by means of sliding mode control, respectively. The lower layer distributes differential longitudinal forces according to the desired yaw moments based on quadratic programming theory. The tire utilization rate is used as the optimization goal considering the actual constraints. To verify performance, three test cases are designed on the dSPACE-ASM simulation platform. The test results show the proposed control strategy can improve the yaw stability and the trajectory following performance of the bus under different driving conditions.

2021 ◽  
Vol 252 ◽  
pp. 01044
Author(s):  
Xian Li

Aiming at the lateral stability control problem of distributed driven electric vehicles under high speed steering condition, a hierarchical control algorithm of direct yaw moment is designed. The upper control takes the 2-DOF vehicle model as the reference model and uses the sliding mode control to obtain the required yaw moment by tracking the desired yaw velocity and the desired vehicle side-slip angle. The lower control optimizes the distribution of four wheel torque with the minimum tire utilization rate. Finally, Carsim/Simulink was used for model building and co-simulation, and the control effect of PID algorithm was compared. The results show the hierarchical control algorithm achieves the expected goal of improving vehicle lateral stability.


Author(s):  
Wuwei Chen ◽  
Linfeng Zhao ◽  
Jinfang Hu ◽  
Dongkui Tan ◽  
Xiaowen Sun

The differential torque of four in-wheel-motor drive electric automotive will affect vehicle stability, and applications of the differential driven assisting steering (DDAS) will be limited consequentially. To solve this problem, stability analysis and control system design is essential, therefore a DDAS stability control system is designed based on the layered control of yaw moment. Correlation functions are used to reflect the shifts of vehicle characteristic state between stable and unstable states, and help to determine the control weight of each subsystem in the lower-layer controller. In the lower-layer controller, the strategy of direct steering-wheel torque control is used to build a DDAS controller. Under different vehicle moving states, differential driving torque and yaw moment vary with the change of the control weights; and according to the theory of quadratic programming, optimal allocation of four-wheel driving torques will be made according to the total driving torque. The effectiveness of the proposed control system is verified by numerical simulation and hardware-in-the-loop experiment. The results show that the proposed control method can improve vehicle stability and ensure driving safety.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Cheng Lin ◽  
Zhifeng Xu ◽  
Ru Zhang

A hierarchical control algorithm of direct yaw moment control for four-wheel independently actuated (FWIA) electric ground vehicles is presented. Sliding mode control is adopted to yield the desired yaw moment in the higher layer of the algorithm due to the possible modeling inaccuracies and parametric uncertainties. The conditional integrator approach is employed to overcome the chattering issue, which enables a smooth transition to a proportional + integral-like controller, with antiwindup, when the system is entering the boundary layer. The lower level of the algorithm is given to allocate the desired yaw moment to four wheels by means of slip ratio distribution and control for a better grasp of control boundaries. Simulation results, obtained with a vehicle dynamics simulator, Carsim, and the Matlab/Simulink, show the effectiveness of the control algorithm.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


Author(s):  
Hui Liu ◽  
Baoshuai Liu ◽  
Ziyong Han ◽  
Yechen Qin ◽  
Xiaolei Ren ◽  
...  

During patrol and surveillance tasks, attitude control is crucial for improving the terrain adaptability of unmanned wheel-legged hybrid vehicles. This paper proposes an attitude control strategy for unmanned wheel-legged hybrid vehicles, considering the contact of the wheels and ground. The proposed method can naturally achieve torque control efficiently of each joint actuator and wheel-side actuator and avoid the discrepancy between off-road terrain and stability. First, an inverse kinematics model is established to resolve the body and each joint rotation angle, and the dynamic model is built based on the multi rigid body theory, considering the contact points planning of wheel and ground. Considering the nonholonomic constraint of the structure scheme, a hierarchical real-time attitude controller for a wheel-legged vehicle is proposed. The upper layer calculates the contact points of each wheel and the ground through the quadratic programming algorithm, and the lower layer is divided into a legged motion generator and a wheel motion generator by a mathematical analysis method. Finally, the proposed method is applied to achieve the tracking and control of the whole-body trajectory. The proposed strategy can achieve the decoupling of wheeled motion generator and legged motion generator, and improve control efficiency.


2019 ◽  
Vol 13 (9) ◽  
pp. 1329-1339 ◽  
Author(s):  
Ke Shi ◽  
Xiaofang Yuan ◽  
Guoming Huang ◽  
Xizheng Zhang ◽  
Yongpeng Shen

2014 ◽  
Vol 709 ◽  
pp. 331-334
Author(s):  
Man Hong Huang ◽  
Huan Shen ◽  
Yun Sheng Tan

In this paper, a vehicle stability control system is proposed to improve vehicle comfort, handling and stability. The control system includes reference model, DYC controller and Distributer. Reference model is used to obtain the desired yaw rate. DYC controller determines the desired yaw moment by means of sliding-mode technique. Distributer, based on maneuverability and comfort, distributes driving torque or braking torque according to the desired yaw rate. Simulation result shows that the proposed control algorithm can improve vehicle handling and stability effectively.


Sign in / Sign up

Export Citation Format

Share Document