Heat transport mechanism via ion-slip and hall current in viscoplastic flow along a porous elastic sheet

Author(s):  
Rashid Mehmood ◽  
Sehrish Khan ◽  
Ehnber Naheed Maraj ◽  
Shagufta Ijaz ◽  
Siddra Rana

Heat transfer phenomena occur in most of the natural as well as engineering or manufacturing production plants. Such significant industrial processes utilize various modes for the transportation of heat and energy. In this veneration, the existing research is an attempt to explore heat transmission in a viscoplastic fluid under thermal radiation in the presence of ion and Hall current. The properties of Hall and ion current have enormous uses, particularly when measured in the presence of heat transferal phenomena with suction and injection. The most relevant examples of such mechanisms are fridge spirals, magnetohydrodynamics accelerators, and control generators. Also, the field of biomechanics under the influence of these characteristics is widely used especially in the flowing of blood and magnetic resonance imaging, which helps in producing magnetic resonance images of the thorax, abdomen, brain, kidney, etc. Furthermore, directed medication transport inside the human body needs a tough and heavy magnetic field. Hence, these vital applications of Hall and ion current cannot be overlooked. Transport phenomena are examined past a porous elastic sheet. The prevailing physical model is adapted as a non-linear system of ordinary differential equations by means of proper similarity alterations. The graphical representation shows the physical implication of all related constraints on the velocity and temperature distribution of viscoplastic fluids. Momentum, as well as thermal boundary thickness, is significantly affected by Hall currents and ion slip parameters in the presence of suction/injection phenomena. The temperature of the fluid rises for Eckert number and radiation parameter and also the skin friction coefficient at the surface rises with the suction parameter. An excellent match of numerical results correctly up to three decimal places are obtained for the limiting case when compared to the already published literature.

Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


2004 ◽  
Vol 30 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Lori Marino ◽  
Keith Sudheimer ◽  
D. Ann Pabst ◽  
William A. Mclellan ◽  
Saima Arshad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document