Optimal trajectory planning for path convergence in three-dimensional space

Author(s):  
Sikha Hota ◽  
Debasish Ghose
2012 ◽  
Vol 271-272 ◽  
pp. 570-574
Author(s):  
Xiao Li Qiu ◽  
Yan Xing ◽  
Shuang Feng

Robot is now can used to cut the opening pore of Pressure Vessel and the end of pipe. It is important to solve the problem of robotic cutting trajectory planning for cutting of the three-dimensional curved surface and the intersected curve with groove at the end of pipe. According to the analytical geometry in the three-dimensional space, the mathematical model of intersected curve with groove is presented. Trajectory planning and cutting torch stance is fixed through the feature extraction and kinematics calculation. Using the L-positioner, the problem of robot limiting in cutting process is resolved. As a post operator, a program is developed to automatically generate corresponding robot program to match to the program language format of Kuka and Reis robot. The robot cutting trajectory supported by the above algorithms and program is tested in solidworks.


Aviation ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 115-122
Author(s):  
Hossein Maghsoudi ◽  
Amirreza Kosari Kosari

In this study, the three-dimensional optimal trajectory planning of an unmanned fixed-wing aerial vehicle was investigated for Terrain Following – Terrain Avoidance (TF-TA) purposes using the Direct Collocation method. For this purpose, firstly, the appropriate equations representing the translational movement of the aircraft were described. The three-dimensional optimal trajectory planning of the flying vehicle was formulated in the TF-TA manoeuvre as an optimal control problem. The terrain profile, as the main allowable height constraint was modelled using the Fractal Generation Method. The resulting optimal control problem was discretized by applying the Direct Collocation numerical technique and then, was transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method was demonstrated by extensive simulations, and it was particularly verified that the purposed approach can produce a solution satisfying almost all the performance and environmental constraints encountering in a low -altitude flight.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document