Prediction of axial compressor blade excitation by using a two-way staggered fluid-structure interaction model

Author(s):  
Jacobus D Brandsen ◽  
Sybrand J van der Spuy ◽  
Gerhard Venter

A vibration excitation system has been developed to excite the rotor blades of an axial compressor, in the specified nodal diameter mode and at the specified frequency, by injecting additional compressed air into the compressor flow path. The system was fitted to the Rofanco compressor test bench at the University of Stellenbosch in South Africa. A two-way staggered fluid–structure interaction (FSI) model was constructed that was capable of simulating the vibrations of the rotor blades excited by the vibration excitation system. The results of the FSI simulations were verified using available experimental data. It was concluded that the FSI model is able to recreate the vibrations of the rotor blades with sufficient accuracy. The results of the FSI simulations also indicated that the vibration excitation system should be capable of exciting the blades in the selected mode shape and at the selected frequency, provided the excitation frequency is close to the natural frequency of the first bending mode of each rotor blade.

Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract Rotary-wing aircrafts are the best-suited option in many cases for its vertical take-off and landing capacity, especially in any congested area, where a fixed-wing aircraft cannot perform. Rotor aerodynamic loading is the major reason behind helicopter vibration, therefore, determining the aerodynamic loadings are important. Coupling among aerodynamics and structural dynamics is involved in rotor blade design where the unsteady aerodynamic analysis is also imperative. In this study, a Bo 105 helicopter rotor blade is considered for computational aerodynamic analysis. A fluid-structure interaction model of the rotor blade with surrounding air is considered where the finite element model of the blade is coupled with the computational fluid dynamics model of the surrounding air. Aerodynamic coefficients, velocity profiles, and pressure profiles are analyzed from the fluid-structure interaction model. The resonance frequencies and mode shapes are also obtained by the computational method. A small-scale model of the rotor blade is manufactured, and experimental analysis of similar contemplation is conducted for the validation of the numerical results. Wind tunnel and vibration testing arrangements are used for the experimental validation of the aerodynamic and vibration characteristics by the small-scale rotor blade. The computational results show that the aerodynamic properties of the rotor blade vary with the change of angle of attack and natural frequency changes with mode number.


2018 ◽  
Vol 9 (4) ◽  
pp. 739-751 ◽  
Author(s):  
Anna Maria Tango ◽  
Jacob Salmonsmith ◽  
Andrea Ducci ◽  
Gaetano Burriesci

2018 ◽  
Vol 21 (16) ◽  
pp. 813-823 ◽  
Author(s):  
John T. Wilson ◽  
Lowell T. Edgar ◽  
Saurabh Prabhakar ◽  
Marc Horner ◽  
Raoul van Loon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document