Innovative Multiple Matching Charts approach to support the conceptual design of hypersonic vehicles

Author(s):  
Davide Ferretto ◽  
Roberta Fusaro ◽  
Nicole Viola

Several well-established best practices and reliable tools have been developed along the years to support aircraft conceptual and preliminary design. In this context, one of the most widely used tool is the Matching Chart (MC), a graphical representation of the different performance requirements (curves representing the thrust-to-weight ratio (T/W) requirement as function of the wing loading (W/S)) for each mission phase. The exploitation of this tool allows the identification of a feasible design space as well as the definition of a reference vehicle configuration in terms of maximum thrust, maximum take-off weight, and wing surface since the very beginning of the design process. Although the tool was originally developed for conventional aircraft, several extensions and updates of the mathematical models have been proposed over the years to widen its application to innovative configurations. Following this trend, this paper presents a further evolution of the MC model to support the conceptual design of high-speed transportation systems, encompassing supersonic and hypersonic flight vehicles. At this purpose, this paper reports and discusses the updates of the methodology laying behind the generation of the MC for high-speed transportation. Eventually, the results of the validation of the updated methodology and tool are reported, using as case study, the STRATOFLY MR3 vehicle configuration, a Mach 8 antipodal civil transportation system, currently under development within the H2020 STRATOFLY project.

Author(s):  
Marcus Lejon ◽  
Tomas Grönstedt ◽  
Nenad Glodic ◽  
Paul Petrie-Repar ◽  
Magnus Genrup ◽  
...  

The paper describes a multidisciplinary conceptual design of an axial compressor, targeting a three stage, high speed, high efficiency booster with a design pressure ratio of 2.8. The paper is outlined in a step wise manner starting from basic aircraft and engine thrust requirements, establishing the definition of the high speed booster interface points and its location in the engine. Thereafter, the aerodynamic 1D/2D design is carried out using the commercial throughflow tool SC90C. A number of design aspects are described, and the steps necessary to arrive at the final design are outlined. The SC90C based design is then carried over to a CFD based conceptual design tool AxCent, in which a first profiling is carried out based on a multiple circular arc blade definition. The design obtained at this point is referred to as the VINK compressor. The first stage of the compressor is then optimized using an in-house optimization tool, where the objective functions are evaluated from detailed CFD calculations. The design is improved in terms of efficiency and in terms of meeting the design criteria put on the stage in the earlier design phases. Finally, some aeromechanical design aspects of the first stage are considered. The geometry and inlet boundary conditions of the compressor are shared with the turbomachinery community on a public server. This is intended to be used as a test case for further optimization and analysis.


Marketing ZFP ◽  
2019 ◽  
Vol 41 (4) ◽  
pp. 21-32
Author(s):  
Dirk Temme ◽  
Sarah Jensen

Missing values are ubiquitous in empirical marketing research. If missing data are not dealt with properly, this can lead to a loss of statistical power and distorted parameter estimates. While traditional approaches for handling missing data (e.g., listwise deletion) are still widely used, researchers can nowadays choose among various advanced techniques such as multiple imputation analysis or full-information maximum likelihood estimation. Due to the available software, using these modern missing data methods does not pose a major obstacle. Still, their application requires a sound understanding of the prerequisites and limitations of these methods as well as a deeper understanding of the processes that have led to missing values in an empirical study. This article is Part 1 and first introduces Rubin’s classical definition of missing data mechanisms and an alternative, variable-based taxonomy, which provides a graphical representation. Secondly, a selection of visualization tools available in different R packages for the description and exploration of missing data structures is presented.


2021 ◽  
Vol 1 ◽  
pp. 731-740
Author(s):  
Giovanni Formentini ◽  
Claudio Favi ◽  
Claude Cuiller ◽  
Pierre-Eric Dereux ◽  
Francois Bouissiere ◽  
...  

AbstractOne of the most challenging activity in the engineering design process is the definition of a framework (model and parameters) for the characterization of specific processes such as installation and assembly. Aircraft system architectures are complex structures used to understand relation among elements (modules) inside an aircraft and its evaluation is one of the first activity since the conceptual design. The assessment of aircraft architectures, from the assembly perspective, requires parameter identification as well as the definition of the overall analysis framework (i.e., mathematical models, equations).The paper aims at the analysis of a mathematical framework (structure, equations and parameters) developed to assess the fit for assembly performances of aircraft system architectures by the mean of sensitivity analysis (One-Factor-At-Time method). The sensitivity analysis was performed on a complex engineering framework, i.e. the Conceptual Design for Assembly (CDfA) methodology, which is characterized by level, domains and attributes (parameters). A commercial aircraft cabin system was used as a case study to understand the use of different mathematical operators as well as the way to cluster attributes.


2018 ◽  
Vol 55 (2) ◽  
pp. 454-474 ◽  
Author(s):  
Russell M. Cummings ◽  
Carsten M. Liersch ◽  
Andreas Schütte ◽  
Kerstin C. Huber

2001 ◽  
Author(s):  
Grant E Hearn ◽  
◽  
Ivo J S Veldhuis ◽  
Riaan van 't Veer ◽  
Robert Jan Steenbergen ◽  
...  

Author(s):  
Irene Maria Beune ◽  
Stefanie Elisabeth Damhuis ◽  
Wessel Ganzevoort ◽  
John Ciaran Hutchinson ◽  
Teck Yee Khong ◽  
...  

Context.— Fetal growth restriction is a risk factor for intrauterine fetal death. Currently, definitions of fetal growth restriction in stillborn are heterogeneous. Objectives.— To develop a consensus definition for fetal growth restriction retrospectively diagnosed at fetal autopsy in intrauterine fetal death. Design.— A modified online Delphi survey in an international panel of experts in perinatal pathology, with feedback at group level and exclusion of nonresponders. The survey scoped all possible variables with an open question. Variables suggested by 2 or more experts were scored on a 5-point Likert scale. In subsequent rounds, inclusion of variables and thresholds were determined with a 70% level of agreement. In the final rounds, participants selected the consensus algorithm. Results.— Fifty-two experts participated in the first round; 88% (46 of 52) completed all rounds. The consensus definition included antenatal clinical diagnosis of fetal growth restriction OR a birth weight lower than third percentile OR at least 5 of 10 contributory variables (risk factors in the clinical antenatal history: birth weight lower than 10th percentile, body weight at time of autopsy lower than 10th percentile, brain weight lower than 10th percentile, foot length lower than 10th percentile, liver weight lower than 10th percentile, placental weight lower than 10th percentile, brain weight to liver weight ratio higher than 4, placental weight to birth weight ratio higher than 90th percentile, histologic or gross features of placental insufficiency/malperfusion). There was no consensus on some aspects, including how to correct for interval between fetal death and delivery. Conclusions.— A consensus-based definition of fetal growth restriction in fetal death was determined with utility to improve management and outcomes of subsequent pregnancies.


Sign in / Sign up

Export Citation Format

Share Document