scholarly journals CONCEPTUAL DESIGN FOR ASSEMBLY IN AEROSPACE INDUSTRY: SENSITIVITY ANALYSIS OF MATHEMATICAL FRAMEWORK AND DESIGN PARAMETERS

2021 ◽  
Vol 1 ◽  
pp. 731-740
Author(s):  
Giovanni Formentini ◽  
Claudio Favi ◽  
Claude Cuiller ◽  
Pierre-Eric Dereux ◽  
Francois Bouissiere ◽  
...  

AbstractOne of the most challenging activity in the engineering design process is the definition of a framework (model and parameters) for the characterization of specific processes such as installation and assembly. Aircraft system architectures are complex structures used to understand relation among elements (modules) inside an aircraft and its evaluation is one of the first activity since the conceptual design. The assessment of aircraft architectures, from the assembly perspective, requires parameter identification as well as the definition of the overall analysis framework (i.e., mathematical models, equations).The paper aims at the analysis of a mathematical framework (structure, equations and parameters) developed to assess the fit for assembly performances of aircraft system architectures by the mean of sensitivity analysis (One-Factor-At-Time method). The sensitivity analysis was performed on a complex engineering framework, i.e. the Conceptual Design for Assembly (CDfA) methodology, which is characterized by level, domains and attributes (parameters). A commercial aircraft cabin system was used as a case study to understand the use of different mathematical operators as well as the way to cluster attributes.

2020 ◽  
Vol 10 (22) ◽  
pp. 8187
Author(s):  
Francesco Di Caprio ◽  
Andrea Sellitto ◽  
Salvatore Saputo ◽  
Michele Guida ◽  
Aniello Riccio

This paper aims to investigate the crashworthiness capability of a commercial aircraft metallic sandwich leading edge, subjected to bird strike events. A sensitivity analysis is presented, aimed to assess the influence of the skin parameters (inner and outer faces and core thicknesses) on the leading-edge crashworthiness and to determine, among the configurations able to withstand a bird strike event, the best compromise in terms of weight and structural performances. In order to easily manage the design parameters and the output data, the ModeFrontier code was used in conjunction with the FE code Abaqus/Explicit. A dedicated python routine was developed to define a fully parametric simplified leading-edge model. To fulfill the aerodynamic requirements, the external surfaces were considered fixed during the sensitivity analysis, and, thus, only the internal leading edge’s components were modified to study their influence on the structural response. The total mass of the model, the maximum deformation and the energy dissipated due to material failure and the plastic deformations were monitored and used to compare and assess the behavior of each configuration.


2021 ◽  
Vol 2 (2) ◽  
pp. 207-214
Author(s):  
Thinh Truong ◽  
Heikki Suikkanen ◽  
Juhani Hyvärinen

In this paper, the conceptual design and a preliminary study of the LUT Heating Experimental Reactor (LUTHER) for 2 MWth power are presented. Additionally, commercially sized designs for 24 MWth and 120 MWth powers are briefly discussed. LUTHER is a scalable light-water pressure-channel reactor designed to operate at low temperature, low pressure, and low core power density. The LUTHER core utilizes low enriched uranium (LEU) to produce low-temperature output, targeting the district heating demand in Finland. Nuclear power needs to contribute to the decarbonizing of the heating and cooling sector, which is a much more significant greenhouse gas emitter than electricity production in the Nordic countries. The main principle in the development of LUTHER is to simplify the core design and safety systems, which, along with using commercially available reactor components, would lead to lower fabrication costs and enhanced safety. LUTHER also features a unique design with movable individual fuel assembly for reactivity control and burnup compensation. Two-dimensional (2D) and three-dimensional (3D) fuel assemblies and reactor cores are modeled with the Serpent Monte Carlo reactor physics code. Different reactor design parameters and safety configurations are explored and assessed. The preliminary results show an optimal basic core design, a good neutronic performance, and the feasibility of controlling reactivity by moving fuel assemblies.


Author(s):  
Marian Sikora ◽  
Janusz Gołdasz

The aim of this work is to provide an insight into the rattle noise phenomena occurring in double-tube (twin-tube) vehicle suspension dampers. In the dampers the particular phenomenon results from interactions between the valve(s) and the fluid passing through them. The rattling noise phenomena is known to degrade the vehicle passenger’s perception of ride comfort as well as to influence the performance of the dampers at low and medium speeds in particular. In the paper the authors reveal the results of a DOE (Design of Experiment) study involving several design parameters known to affect rattling occurrence. By running a series of purpose-designed tests the authors investigate not only the contribution of each particular parameter but the interactions between them. The results are presented in the form of pareto charts, main effect plots as well as interaction plots. It is expected the outcome of the analysis will aid in a better comprehension of the phenomena as well the definition of valve configurations to minimize their performance degradation.


2021 ◽  
Author(s):  
Adwait Verulkar ◽  
Corina Sandu ◽  
Daniel Dopico ◽  
Adrian Sandu

Abstract Sensitivity analysis is one of the most prominent gradient based optimization techniques for mechanical systems. Model sensitivities are the derivatives of the generalized coordinates defining the motion of the system in time with respect to the system design parameters. These sensitivities can be calculated using finite differences, but the accuracy and computational inefficiency of this method limits its use. Hence, the methodologies of direct and adjoint sensitivity analysis have gained prominence. Recent research has presented computationally efficient methodologies for both direct and adjoint sensitivity analysis of complex multibody dynamic systems. The contribution of this article is in the development of the mathematical framework for conducting the direct sensitivity analysis of multibody dynamic systems with joint friction using the index-1 formulation. For modeling friction in multibody systems, the Brown and McPhee friction model has been used. This model incorporates the effects of both static and dynamic friction on the model dynamics. A case study has been conducted on a spatial slider-crank mechanism to illustrate the application of this methodology to real-world systems. Using computer models, with and without joint friction, effect of friction on the dynamics and model sensitivities has been demonstrated. The sensitivities of slider velocity have been computed with respect to the design parameters of crank length, rod length, and the parameters defining the friction model. Due to the highly non-linear nature of friction, the model dynamics are more sensitive during the transition phases, where the friction coefficient changes from static to dynamic and vice versa.


Author(s):  
Alfonso Callejo ◽  
Daniel Dopico

Algorithms for the sensitivity analysis of multibody systems are quickly maturing as computational and software resources grow. Indeed, the area has made substantial progress since the first academic methods and examples were developed. Today, sensitivity analysis tools aimed at gradient-based design optimization are required to be as computationally efficient and scalable as possible. This paper presents extensive verification of one of the most popular sensitivity analysis techniques, namely the direct differentiation method (DDM). Usage of such method is recommended when the number of design parameters relative to the number of outputs is small and when the time integration algorithm is sensitive to accumulation errors. Verification is hereby accomplished through two radically different computational techniques, namely manual differentiation and automatic differentiation, which are used to compute the necessary partial derivatives. Experiments are conducted on an 18-degree-of-freedom, 366-dependent-coordinate bus model with realistic geometry and tire contact forces, which constitutes an unusually large system within general-purpose sensitivity analysis of multibody systems. The results are in good agreement; the manual technique provides shorter runtimes, whereas the automatic differentiation technique is easier to implement. The presented results highlight the potential of manual and automatic differentiation approaches within general-purpose simulation packages, and the importance of formulation benchmarking.


Author(s):  
Shilpa A. Vaze ◽  
Prakash Krishnaswami ◽  
James DeVault

Most state-of-the-art multibody systems are multidisciplinary and encompass a wide range of components from various domains such as electrical, mechanical, hydraulic, pneumatic, etc. The design considerations and design parameters of the system can come from any of these domains or from a combination of these domains. In order to perform analytical design sensitivity analysis on a multidisciplinary system (MDS), we first need a uniform modeling approach for this class of systems to obtain a unified mathematical model of the system. Based on this model, we can derive a unified formulation for design sensitivity analysis. In this paper, we present a modeling and design sensitivity formulation for MDS that has been successfully implemented in the MIXEDMODELS (Multidisciplinary Integrated eXtensible Engine for Driving Metamodeling, Optimization and DEsign of Large-scale Systems) platform. MIXEDMODELS is a unified analysis and design tool for MDS that is based on a procedural, symbolic-numeric architecture. This architecture allows any engineer to add components in his/her domain of expertise to the platform in a modular fashion. The symbolic engine in the MIXEDMODELS platform synthesizes the system governing equations as a unified set of non-linear differential-algebraic equations (DAE’s). These equations can then be differentiated with respect to design to obtain an additional set of DAE’s in the sensitivity coefficients of the system state variables with respect to the system’s design variables. This combined set of DAE’s can be solved numerically to obtain the solution for the state variables and state sensitivity coefficients of the system. Finally, knowing the system performance functions, we can calculate the design sensitivity coefficients of these performance functions by using the values of the state variables and state sensitivity coefficients obtained from the DAE’s. In this work we use the direct differentiation approach for sensitivity analysis, as opposed to the adjoint variable approach, for ease in error control and software implementation. The capabilities and performance of the proposed design sensitivity analysis formulation are demonstrated through a numerical example consisting of an AC rectified DC power supply driving a slider crank mechanism. In this case, the performance functions and design variables come from both electrical and mechanical domains. The results obtained were verified by perturbation analysis, and the method was shown to be very accurate and computationally viable.


Sign in / Sign up

Export Citation Format

Share Document