scholarly journals N4-Acyl-Modified D-2′,3′-Dideoxy-5-Fluorocytidine Nucleoside Analogues with Improved Antiviral Activity

2003 ◽  
Vol 14 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Junxing Shi ◽  
Judy S Mathew ◽  
Phillip M Tharnish ◽  
Suguna Rachakonda ◽  
S Balakrishna Pai ◽  
...  

A series of 2,3-dideoxy (D2) and 2,3-didehydro-2,3-dideoxy (D4) 5-fluorocytosine nucleosides modified with substituted benzoyl, heteroaromatic carbonyl, cycloalkylcarbonyl and alkanoyl at the N4-position were synthesized and evaluated for anti-human immunodeficiency virus type 1 (HIV-1) and anti-hepatitis B virus (HBV) activity in vitro. For most D2-nucleosides, N4-substitutions improved the anti-HIV-1 activity markedly without increasing the cytotoxicity. In the D4-nucleosides series, some of the substituents at the N4-position enhanced the anti-HIV-1 activity with a modest increase in the cytotoxicity. The most potent and selective N4-modified nucleoside for the D2-series was N4- p-iodobenzoyl-D2FC, which had a 46-fold increase in anti-HIV-1 potency in MT-2 cells compared to the parent nucleoside D-D2FC. In the D4-series, N4- p-bromobenzoyl-D4FC was 12-fold more potent in MT-2 cells compared to the parent nucleoside D-D4FC. All eight N4- p-halobenzoyl-substituted D2- and D4-nucleosides evaluated against HBV in HepAD38 cells demonstrated equal or greater potency than the two parental compounds, D-D2FC and D-D4FC. The N4-modification especially in the D2-nucleoside series containing the N4-nicotinoyl, o-nitrobenzoyl and n-butyryl showed a significant reduction in mitochondrial toxicity relative to the parent nucleoside analogue. Although the 5′-triphosphate of the parent compound (D-D4FC-TP) was formed from the N4-acyl-D4FC analogues in different cells, the levels of the 5′-triphosphate nucleotide did not correlate with the cell-derived 90% effective antiviral concentrations (EC90), suggesting that a direct interaction of the triphosphates of these N4-acyl nucleosides was involved in the antiviral activity.

1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2007 ◽  
Vol 51 (9) ◽  
pp. 3147-3154 ◽  
Author(s):  
Richard Hazen ◽  
Robert Harvey ◽  
Robert Ferris ◽  
Charles Craig ◽  
Phillip Yates ◽  
...  

ABSTRACT Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC50s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC50s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC50s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.


2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


1999 ◽  
Vol 43 (10) ◽  
pp. 2376-2382 ◽  
Author(s):  
Zhengxian Gu ◽  
Mark A. Wainberg ◽  
Nghe Nguyen-Ba ◽  
Lucille L’Heureux ◽  
Jean-Marc de Muys ◽  
...  

ABSTRACT (−)-β-d-1′,3′-Dioxolane guanosine (DXG) and 2,6-diaminopurine (DAPD) dioxolanyl nucleoside analogues have been reported to be potent inhibitors of human immunodeficiency virus type 1 (HIV-1). We have recently conducted experiments to more fully characterize their in vitro anti-HIV-1 profiles. Antiviral assays performed in cell culture systems determined that DXG had 50% effective concentrations of 0.046 and 0.085 μM when evaluated against HIV-1IIIB in cord blood mononuclear cells and MT-2 cells, respectively. These values indicate that DXG is approximately equipotent to 2′,3′-dideoxy-3′-thiacytidine (3TC) but 5- to 10-fold less potent than 3′-azido-2′,3′-dideoxythymidine (AZT) in the two cell systems tested. At the same time, DAPD was approximately 5- to 20-fold less active than DXG in the anti-HIV-1 assays. When recombinant or clinical variants of HIV-1 were used to assess the efficacy of the purine nucleoside analogues against drug-resistant HIV-1, it was observed that AZT-resistant virus remained sensitive to DXG and DAPD. Virus harboring a mutation(s) which conferred decreased sensitivity to 3TC, 2′,3′-dideoxyinosine, and 2′,3′-dideoxycytidine, such as a 65R, 74V, or 184V mutation in the viral reverse transcriptase (RT), exhibited a two- to fivefold-decreased susceptibility to DXG or DAPD. When nonnucleoside RT inhibitor-resistant and protease inhibitor-resistant viruses were tested, no change in virus sensitivity to DXG or DAPD was observed. In vitro drug combination assays indicated that DXG had synergistic antiviral effects when used in combination with AZT, 3TC, or nevirapine. In cellular toxicity analyses, DXG and DAPD had 50% cytotoxic concentrations of greater than 500 μM when tested in peripheral blood mononuclear cells and a variety of human tumor and normal cell lines. The triphosphate form of DXG competed with the natural nucleotide substrates and acted as a chain terminator of the nascent DNA. These data suggest that DXG triphosphate may be the active intracellular metabolite, consistent with the mechanism by which other nucleoside analogues inhibit HIV-1 replication. Our results suggest that the use of DXG and DAPD as therapeutic agents for HIV-1 infection should be explored.


2016 ◽  
Vol 71 (5-6) ◽  
pp. 105-109 ◽  
Author(s):  
Zhiping Che ◽  
Yuee Tian ◽  
Zhenjie Hu ◽  
Yingwu Chen ◽  
Shengming Liu ◽  
...  

Abstract Fifteen N-arylsulfonyl-3-propionylindoles (3a–o) were prepared and preliminarily evaluated as in vitro inhibitors of human immunodeficiency virus type-1 (HIV-1). Three compounds 3c, 3g and 3i exhibited potent anti-HIV-1 activity with effective concentration (EC50) values of 0.8, 4.0 and 1.2 μg/mL, and therapeutic index (TI) values of 11.7, 16.6 and 84.1, respectively. N-(m-Nitro)phenylsulfonyl-3-propionyl-6-methylindole (3i) exhibited the most promising and best activity against HIV-1 replication. The cytotoxicity of these compounds was assessed as well.


2001 ◽  
Vol 75 (9) ◽  
pp. 4413-4419 ◽  
Author(s):  
Zheng Fan ◽  
Xiao-Li Huang ◽  
Luann Borowski ◽  
John W. Mellors ◽  
Charles R. Rinaldo

ABSTRACT We demonstrate that dendritic cells loaded in vitro with human immunodeficiency virus type 1 (HIV-1) protein-liposome complexes activate HLA class I-restricted anti-HIV-1 cytotoxic T-lymphocyte and gamma interferon (IFN-γ) responses in autologous CD8+ T cells from late-stage HIV-1-infected patients on prolonged combination drug therapy. Interleukin-12 enhanced this effect through an interleukin-2- and IFN-γ-mediated pathway. This suggests that dendritic cells from HIV-1-infected persons can be engineered to evoke stronger anti-HIV-1 CD8+ T-cell reactivity as a strategy to augment antiretroviral therapy.


2003 ◽  
Vol 77 (7) ◽  
pp. 4095-4103 ◽  
Author(s):  
Susanne Wolbank ◽  
Renate Kunert ◽  
Gabriela Stiegler ◽  
Hermann Katinger

ABSTRACT We have previously generated human monoclonal anti-human immunodeficiency virus type 1 (anti-HIV-1) antibodies 2F5IgG and 2G12IgG with an exceptional cross-clade neutralizing potential. 2F5IgG and 2G12IgG passively administrated to macaques were able to confer complete protection from both intravenous and mucosal challenge with pathogenic HIV-simian immunodeficiency virus chimeric strains and have shown beneficial effects in a phase-1 clinical trial. We now class-switched 2F5 and 2G12 to the immunoglobulin M (IgM) or IgA isotype, to enforce features like avidity, complement activation, or the potential to neutralize mucosal transmission. For this purpose we expressed functional polymeric 2F5 and 2G12 antibodies in CHO cells and evaluated their anti-HIV-1 activity in vitro. The class switch had a strong impact on the protective potential of 2F5 and 2G12. 2G12IgM inhibited HIV-1 infection of peripheral blood mononuclear cell cultures up to 28-fold-more efficiently than the corresponding IgG and neutralized all of the primary isolates tested. The 2F5 and 2G12 antibodies of all isotypes were able to interact with active human serum to inhibit viral infection. Furthermore, we demonstrated that polymeric 2F5 and 2G12 antibodies but not the corresponding IgGs could interfere with HIV-1 entry across a mucosal epithelial layer in vitro. Although polymeric 2F5 antibodies had only limited potential in the standard neutralization assay, the results from the mucosal assay suggest that 2F5 and 2G12 antibodies may have a high potential to prevent natural HIV-1 transmission in vivo.


1997 ◽  
Vol 8 (4) ◽  
pp. 343-352 ◽  
Author(s):  
J Cinatl ◽  
B Gröschel ◽  
R Zehner ◽  
J Cinatl ◽  
C Périgaud ◽  
...  

Human T lymphoid MOLT4/8 cells were grown continuously for more than 2 years in a medium containing 3′-azido-2′,3′-dideoxythymidine (zidovudine; AZT) at a concentration of 250 μM. These cells, designated MOLT-4/8rAZT250, were used to test the cytotoxic and antiviral activity of AZT. Intracellular accumulation of AZT, expression of the multidrug resistance 1 (MDR-1) gene, thymidine kinase (TK) gene and activity of the TK enzyme in cellular extracts were measured. The results showed that both the cytotoxic and antiviral activity of AZT were significantly lower in MOLT4/8rAZT250 than in MOLT4/8 cells; concentrations required to inhibit 50% production of the p24 human immunodeficiency virus type 1 (HIV-1) antigen of two laboratory strains were at least 100-fold higher in resistant cells. The MDR-1 gene was not expressed in the resistant cells. TK mRNA expression was significantly lower in the resistant than in the sensitive cells. TK enzymatic activity for deoxythymidine phosphorylation was impaired in MOLT4/8rAZT250 cells compared to the sensitive cells. AZT was phosphorylated only in the sensitive cells whereas no phosphorylation of AZT was found in the resistant cells. We tested whether several AZT-monophosphate triesters, which bypass cellular TK, could overcome resistance to the cytotoxic and antiviral activity of AZT. The bis( t-butylSATE) phosphotriester derivative of AZT showed comparable cytotoxic and antiviral activity in sensitive and resistant cells. The results demonstrated that MOLT4/8rAZT250 cells exert resistance to the anti-HIV activity of the drug mainly owing to the lack of AZT phosphorylation and that resistance may be bypassed by using AZT-monophosphate SATE prodrugs.


2010 ◽  
Vol 54 (6) ◽  
pp. 2670-2673 ◽  
Author(s):  
Kai Lin ◽  
Sylwia Karwowska ◽  
Eric Lam ◽  
Kay Limoli ◽  
Thomas G. Evans ◽  
...  

ABSTRACT Most approved drugs with activity against hepatitis B virus (HBV) have activity against human immunodeficiency virus type 1 (HIV-1), which precludes their use in patients who are coinfected with HBV and HIV-1 and who are not receiving antiretroviral therapy due to the risk of inducing resistance. The activity of telbivudine, a highly selective HBV inhibitor, against temporally and geographically distinct wild-type and multidrug-resistant HIV-1 clinical isolates was evaluated in vitro. No inhibition was observed with up to 600 μM drug, which supports further exploration of telbivudine as a therapeutic option for the treatment of HBV infections in patients coinfected with HIV-1.


2005 ◽  
Vol 49 (10) ◽  
pp. 4110-4120 ◽  
Author(s):  
Dong-Seong Lee ◽  
Kyeong-Eun Jung ◽  
Cheol-Hee Yoon ◽  
Hong Lim ◽  
Yong-Soo Bae

ABSTRACT A series of modified oligonucleotides (ONs), characterized by a phosphorothioate (P═S) backbone and a six-membered azasugar (6-AZS) as a sugar substitute in a nucleotide, were newly synthesized and assessed for their ability to inhibit human immunodeficiency virus type 1 (HIV-1) via simple treatment of HIV-1-infected cultures, without any transfection process. While unmodified P═S ONs exhibited only minor anti-HIV-1 activity, the six-membered azasugar nucleotide (6-AZN)-containing P═S oligonucleotides (AZPSONs) exhibited remarkable antiviral activity against HIV-1/simian-human immunodeficiency virus (SHIV) replication and syncytium formation (50% effective concentration = 0.02 to 0.2 μM). The AZPSONs exhibited little cytotoxicity at concentrations of up to 100 μM. DBM 2198, one of the most effective AZPSONs, exhibited antiviral activity against a broad spectrum of HIV-1, including T-cell-tropic, monotropic, and even drug-resistant HIV-1 variants. The anti-HIV-1 activities of DBM 2198 were similarly maintained in HIV-1-infected cultures of peripheral blood mononuclear cells. When we treated severely infected cultures with DBM 2198, syncytia disappeared completely within 2 days. Taken together, our results indicate that DBM 2198 and other AZPSONs may prove useful in the further development of safe and effective AIDS-therapeutic drugs against a broad spectrum of HIV-1 variants.


Sign in / Sign up

Export Citation Format

Share Document