A concise funnel robust model-free control mechanism for hypersonic space vehicles based on error driving

Author(s):  
Xingge Li ◽  
Shufeng Zhang ◽  
Yashun Wang ◽  
Yao Liu ◽  
Zhengwei Fan ◽  
...  

Based on non-affine models of hypersonic space vehicles, the tracking control problem of hypersonic vehicles is studied and analyzed in this article using funnel robust model-free control mechanism considering parametric uncertainty and external disturbances. First, the control system is decomposed into altitude subsystem and velocity subsystem. For altitude subsystem, we propose a concise funnel robust model-free control mechanism based on error driving, and a novel model transformation approach is applied to the controller design. The new model-free controller only contains a Hurwitz stable term and a filtering term, and does not need precise motion model and too much calculation, so it can improve the calculation speed of the system. For velocity subsystem, only a concise proportional-integral controller is needed to meet the tracking requirements. Moreover, the devised controller is capable of guaranteeing funnel performance on the altitude and velocity tracking errors. Finally, numerical simulation results are presented to verify the efficiency of the design.

Author(s):  
Maroua Haddar ◽  
Riadh Chaari ◽  
S Caglar Baslamisli ◽  
Fakher Chaari ◽  
Mohamed Haddar

A novel active suspension control design method is proposed for attenuating vibrations caused by road disturbance inputs in vehicle suspension systems. For the control algorithm, we propose an intelligent PD controller structure that effectively rejects online estimated disturbances. The main theoretical techniques used in this paper consist of an ultra-local model which replaces the mathematical model of quarter car system and a new algebraic estimator of unknown information. The measurement of only input and output variables of the plant is required for achieving the reference tracking task and the cancellation of unmodeled exogenous and endogenous perturbations such as roughness road variation, unpredictable variation of vehicle speed and load variation. The performance and robustness of the proposed active suspension algorithm are compared with ADRC control and LQR control. Numerical results are provided for showing the improvement of passenger comfort criteria with model-free control.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1586
Author(s):  
Jaemin Baek ◽  
Jinmyung Jung

This paper presents an extended time-delayed control (ETDC) scheme and applies it to a quadrotor system. The proposed ETDC scheme uses a one-sample delayed information of the system for canceling out the uncertainties and disturbances in nonlinear quadrotor system, which involves a combination of pole-placement term to deal with the pole assignment. Thus, the proposed one requires no prior knowledge about the quadrotor dynamics, which is called model-free control scheme, and then assures fast convergence rate while providing simplicity structure. To suppress time-delayed estimation (TDE) errors generated by using one-sample delayed information of the system, a new auxiliary control scheme is designed in the proposed ETDC scheme. It results in a proper switching gain without undesirable side effect, including chattering and input fluctuation. Moreover, given that it does not require any number of additional parameters, the number of the parameters in the proposed ETDC scheme has no change compared to that in conventional time-delayed control. From these benefits, the proposed one can be recognized as a simple and effective alternative to the quadrotor system with nonlinearity and complexity. The tracking errors are proved to be uniformly ultimately bounded through Lyapunov function. The effectiveness of the proposed ETDC scheme is verified by the simulation with the quadrotor system, which is compared to that of the conventional time-delayed control scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dorsaf Elleuch ◽  
Tarak Damak

An intelligent proportional-derivative sliding mode controller (i-PDSMC) is presented to overcome the unmodeled complexity of the robot manipulator under an actuator. i-PDSMC is a free model intelligent control based on the ultralocal, sliding mode, and PD control structure. A stability condition is determined by the Lyapunov theory. A comparative study between a classical PD, an intelligent PD control, and i-PDSMC is done through a robot manipulator under actuators. The simulation results prove that the proposed controller is more robust to trajectory tracking under parameter variations and external disturbances.


Author(s):  
Ahsene Boubakir ◽  
Sid-Ahmed Touil ◽  
Salim Labiod ◽  
Nasserdine Boudjerda

AbstractIn this paper, a robust model-free controller for a grid-connected photovoltaic (PV) system is designed. The system consists of a PV generator connected to a three-phase grid by a DC/AC converter. The control objectives of the overall system are to extract maximum power from the PV source, to control reactive power exchange and to improve the quality of the current injected into the grid. The model-free control technique is based on the use of an ultra-local model instead of the dynamic model of the overall system. The local model is continuously updated based on a numerical differentiator using only the input–output behavior of the controlled system. The model-free controller consists of a classical feedback controller and a compensator for the effects of internal parameter changes and external disturbances. Simulation results illustrate the efficiency of the controller for grid-connected PV systems.


2016 ◽  
Vol 84 (1-4) ◽  
pp. 37-52 ◽  
Author(s):  
Younes Al Younes ◽  
Ahmad Drak ◽  
Hassan Noura ◽  
Abdelhamid Rabhi ◽  
Ahmed El Hajjaji

Sign in / Sign up

Export Citation Format

Share Document