scholarly journals Late-Holocene high-frequency East Asia Winter Monsoon variability inferred from the environmentally sensitive grain size component in the distal shelf mud area, East China Sea

The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Shuhuan Du ◽  
Rong Xiang ◽  
Zuosheng Yang ◽  
Zhigang Guo ◽  
Yoshiki Saito ◽  
...  

The B2 (B2G) and I4 sediment cores recovered from the centre of the distal mud area of the East China Sea (ECS) were analysed for grain size distribution. Proxies for environmentally sensitive grain size components (ESGSC) retrieved from the composite B2 core, namely, variations in the volumetric content and mean grain size of specific grain size fractions, reveal a detailed history of the East Asia Winter Monsoon (EAWM) including centennial to decadal-scale variations spanning the last 2300 calendar years before present (cal. yr BP). The results indicate that EAWM variations are consistent with temperature changes in eastern China (as inferred from historical documents). Additionally, the sea surface temperature (SST) in the Southern Okinawa Trough, the δ18O of stalagmite from the Sanbao cave and the drift ice indices from the North Atlantic, along with strong or weak EAWMs, corresponding to low or high temperatures, respectively. Four periods of EAWM variations were identified, namely, a weak EAWM stage from 2300 to 2050 cal. yr BP; a comparatively enhanced EAWM between 2050 and 1700 cal. yr BP; a return to a weak EAWM from 1700 to 700 cal. yr BP, including the Roman Warm Period (RWP), the Sui–Tang Dynasty Warm Period (STWP) and the ‘Medieval Warm Period’ (MWP) and a strongly developed EAWM between 700 and 100 cal. yr BP, corresponding to a ‘Little Ice Age’. An important abrupt warm to cold climate change event occurred around 678 cal. yr BP. During this period, the climate change was likely related to global scale changes in atmospheric circulation. Spectral analyses of the ESGSC proxies show high-frequency cycles and a close solar–monsoon connection to the EAWM, suggesting that one of the primary controls for centennial to decadal-scale change in EAWM intensity was the variation in solar radiation during that time.

2018 ◽  
Author(s):  
Junxi Zhang ◽  
Yang Gao ◽  
L. Ruby Leung ◽  
Kun Luo ◽  
Huan Liu ◽  
...  

Abstract. A multi-model ensemble of Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) simulations are used to study the atmospheric oxidized nitrogen (NOy) deposition over East Asia under climate and emission changes projected for the future. Both dry and wet NOy deposition shows significant decreases in the 2100s under RCP 4.5 and RCP 8.5, primarily due to large anthropogenic emission reduction over both land and sea. However, in the near future of the 2030s, both dry and wet NOy deposition increases significantly due to continued increase in emissions. The individual effect of climate or emission changes on dry and wet NOy deposition is also investigated. The impact of climate change on dry NOy deposition is relatively minor, but the effect on wet deposition, primarily caused by changes in precipitation, is much higher. For example, over the East China Sea, wet NOy deposition increases significantly in summer due to climate change by the end of this century under RCP 8.5, which may subsequently enhance marine primary production. Over the coastal seas of China, as the transport of NOy from land becomes weaker due to the decrease of anthropogenic emissions, the effect of ship emission and lightning emission becomes more important. On average, seasonal mean total NOy deposition is projected to be enhanced by 24–48 % and 3 %–37 % over Yellow Sea and East China Sea, respectively, by the end of this century. Therefore, continued control of both anthropogenic emission over land and ship emissions may reduce NOy deposition to the Chinese coastal seas.


2012 ◽  
Vol 55 (10) ◽  
pp. 1656-1668 ◽  
Author(s):  
BangQi Hu ◽  
ZuoSheng Yang ◽  
MeiXun Zhao ◽  
Yoshiki Saito ◽  
DeJiang Fan ◽  
...  

2010 ◽  
Vol 55 (21) ◽  
pp. 2306-2314 ◽  
Author(s):  
ShengFa Liu ◽  
XueFa Shi ◽  
YanGuang Liu ◽  
ShuQing Qiao ◽  
Gang Yang ◽  
...  

Author(s):  
Bernhard Weninger ◽  
Lee Clare

Recent advances in palaeoclimatological and meteorological research, combined with new radiocarbon data from western Anatolia and southeast Europe, lead us to formulate a new hypothesis for the temporal and spatial dispersal of Neolithic lifeways from their core areas of genesis. The new hypothesis, which we term the Abrupt Climate Change (ACC) Neolithization Model, incorporates a number of insights from modern vulnerability theory. We focus here on the Late Neolithic (Anatolian terminology), which is followed in the Balkans by the Early Neolithic (European terminology). From high-resolution 14C-case studies, we infer an initial (very rapid) west-directed movement of early farming communities out of the Central Anatolian Plateau towards the Turkish Aegean littoral. This move is exactly in phase (decadal scale) with the onset of ACC conditions (~6600 cal BC). Upon reaching the Aegean coastline, Neolithic dispersal comes to a halt. It is not until some 500 years later—that is, at the close of cumulative ACC and 8.2 ka cal BP Hudson Bay cold conditions—that there occurs a second abrupt movement of farming communities into Southeast Europe, as far as the Pannonian Basin. The spread of early farming from Anatolia into eastern Central Europe is best explained as Neolithic communities’ mitigation of biophysical and social vulnerability to natural (climate-induced) hazards.


The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


Sign in / Sign up

Export Citation Format

Share Document