Benzene metabolites enhance reactive oxygen species generation in HL60 human leukemia cells

1996 ◽  
Vol 15 (5) ◽  
pp. 422-427 ◽  
Author(s):  
Y. Shen ◽  
H-M. Shen ◽  
C-Y. Shi ◽  
C-N. Ong

Benzene is myelotoxic and leukemogenic in humans. The mechanisms leading to these effects, however have not been fully elucidated. One of the underlying mechanisms is believed to be the oxidative damage caused by its metabolites. A comparative study was undertaken to examine the relationships between reactive oxygen species (ROS) production, lipid peroxidation and subse quent cytotoxicity induced by five major benzene meta bolites. The generation of ROS by benzene metabolites was demonstrated by the significant and dose-dependent increase of intracellular ROS formation in HL60 human promyelocytic leukemia cells in vitro. 1,4-Benzoquinone (BQ) was found to be the most potent metabolite in induction of ROS formation, followed by 1,2,4-benzene triol (BT) and to a lesser extent, phenol (PH) and trans, trans-muconaldehyde (MD). No significant effect was observed when the cells were treated with trans, trans-muconic acid (MA). The enhancement of ROS production by BQ was effectively inhibited by the addition of catalase, deferoxamine (DFO) and dimethyl sulfoxide (DMSO), but unchanged by superoxide dismutase (SOD), suggest that hydrogen peroxide (H2O2) and hydroxyl radicals (OH.) are the two major forms of ROS involved. The results also demonstrate that the ability of benzene metabolites in enhancing ROS generation is closely correlated to their capacity in causing lipid peroxidation and subsequent cytotoxicity. These findings together with earlier parallel observations on DNA damage suggest that ROS play an important role in the mechanism of carcinogenesis induced by benzene metabolites.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4370-4370
Author(s):  
Guo Kunyuan ◽  
Miaorong She ◽  
Haiyan Hu ◽  
Xinqing Niu ◽  
Sanfang Tu ◽  
...  

Abstract 2-Methoxyestradiol (2-ME) is a new anticancer agent currently under investigation for treatment of leukemia. We evaluated the effects of 2-ME-induced apoptosis in two myeloid leukemia cell lines (U937 and HL-60) in association with reactive oxygen species (ROS) generation. We found that 2-ME resulted in viability decrease in a dose-dependent manner, generated ROS: nitric oxide and superoxide anions, and mitochondria damage. 2-ME-induced apoptosis correlated with increase in ROS. Quenching of ROS with N-acetyl-L-cysteine protected leukemia cells from the cytotoxicity of 2-ME and prevented apoptosis induction by 2-ME. Furthermore, addition of manumycin, a farnesyltransferase inhibitor, demonstrated by our previous studies that induced apoptosis of leukemic cells and induced ROS, significantly enhanced the apoptosis-induced by 2-ME. In conclusion, cellular ROS generation play an important role in the cytotoxic effect of 2-ME. It is possible to use ROS-generation agents such as manumycin to enhance the antileukemic effect. Such a combination strategy need the further in vivo justify and may have potential clinical application.


2011 ◽  
Vol 25 (4) ◽  
pp. 817-824 ◽  
Author(s):  
Jin-Woo Jeong ◽  
Cheng-Yun Jin ◽  
Cheol Park ◽  
Su Hyun Hong ◽  
Gi-Young Kim ◽  
...  

1999 ◽  
Vol 87 (6) ◽  
pp. 2177-2185 ◽  
Author(s):  
G. Supinski ◽  
D. Nethery ◽  
D. Stofan ◽  
A. DiMarco

Recent studies have indicated that free radicals may play an important role in the development of muscle dysfunction in many pathophysiological conditions. Because the degree of muscle dysfunction observed in some of these conditions appears to be both free radical dependent and modulated by extracellular calcium concentrations, we thought that there may be a link between these two phenomena; i.e., the propensity of a muscle to generate free radicals may be dependent on extracellular calcium concentrations. For this reason, we compared formation of reactive oxygen species (ROS; i.e., free radicals) by electrically stimulated rat diaphragms (trains of 20-Hz stimuli for 10 min, train rate 0.25 trains/s) incubated in organ baths filled with physiological solutions containing low (1 mM), normal (2.5 mM), or high (5 mM) calcium levels. Generation of ROS was assessed by measuring the conversion of hydroethidine to ethidium. We found ROS generation with contraction varied with the extracellular calcium level, with low ROS production (3.18 ± 0.40 ng ethidium/mg tissue) for low-calcium studies and with much higher ROS generation for normal-calcium (18.90 ± 2.70 ng/mg) or high-calcium (19.30 ± 4.50 ng/mg) studies ( P < 0.001). Control, noncontracting diaphragms (in 2.5 mM calcium) had little ROS production (3.40 ± 0.80 ng/mg; P < 0.001). To further investigate this issue, we added nimodipine (20 μM), an L-type calcium channel blocker, to contracting diaphragms (2.5 mM calcium bath) and found that nimodipine also suppressed ROS formation (2.56 ± 0.85 ng ethidium/mg tissue). These data indicate that ROS generation by the contracting diaphragm is strongly influenced by extracellular calcium concentrations and may be dependent on calcium transport through L-type calcium channels.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


1993 ◽  
Vol 4 (2) ◽  
pp. 178-186 ◽  
Author(s):  
J Himmelfarb ◽  
K A Ault ◽  
D Holbrook ◽  
D A Leeber ◽  
R M Hakim

By the use of flow cytometric techniques, this prospective, randomized crossover study was designed to analyze intradialytic granulocyte reactive oxygen species (ROS) formation in whole blood with complement-activating and noncomplement-activating hollow fiber membranes. Dialysis with a complement-activating membrane resulted in a 6.5-fold increase in granulocyte hydrogen peroxide production 15 min after dialysis initiation and remained significantly elevated (P < 0.01) through the first 30 min with this membrane in comparison to both predialysis values and simultaneous values with a noncomplement-activating membrane. Further studies demonstrated that blood obtained at 15 min with a complement-activating membrane generated significantly less granulocyte ROS production in response to Staphylococcus aureus incubation than blood obtained either predialysis or at the same time in dialysis with a noncomplement-activating membrane. Both complement-activating and noncomplement-activating dialysis membranes caused slightly decreased granulocyte responsiveness to phorbol myristate acetate. It was concluded that hemodialysis with complement-activating membranes results in increased granulocyte ROS production and decreased responsiveness to S. aureus challenge during the dialysis procedure. These results document the potential role of ROS in hemodialysis-associated pathology and susceptibility to infection.


Sign in / Sign up

Export Citation Format

Share Document