Differences in Cartilage Formed Intramuscularly or in Joint Surface Defects by Syngeneic Rat Chondrocytes Isolated from the Articular-Epiphyseal Cartilage Complex

1993 ◽  
Vol 2 (6) ◽  
pp. 467-473 ◽  
Author(s):  
Stanislaw Moskalewski ◽  
Anna Hyc ◽  
Tomasz Grzela ◽  
Jacek Malejczyk

Syngeneic rat chondrocytes isolated from the articular-epiphyseal cartilage complex were suspended in hyaluronic acid and transplanted intramuscularly or into joint surface defects. Transplants were fixed in ruthenium hexammonium trichloride and embedded in glycol methacrylate. In cartilage nodules produced intramuscularly, chondrocyte hypertrophy and matrix calcification were observed after 2 wk. Partial ossification occurred after 4 wk and the cartilage was almost completely replaced by an ossicle after 8 wk. Only small, dispersed groups of chondrocytes remained within the ossicle. In cartilage formed in joint surface defects a superficial and a deep zone were distinguished. Chondrocytes in the superficial zone did not hypertrophy and cartilage remained unossified. In the deep zone matrix calcification and bone formation occurred. These processes were, however, retarded in comparison with intramuscular transplants. Thus, either intraarticular environment exerted an inhibitory effect on chondrocyte hypertrophy and matrix calcification or articular chondrocytes present among transplanted cells accumulated close to the joint lumen and reconstructed normal articular cartilage.

2021 ◽  
pp. 088532822110020
Author(s):  
Kuan Yong Ching ◽  
Orestis Andriotis ◽  
Bram Sengers ◽  
Martin Stolz

Towards optimizing the growth of extracellular matrix to produce repair cartilage for healing articular cartilage (AC) defects in joints, scaffold-based tissue engineering approaches have recently become a focus of clinical research. Scaffold-based approaches by electrospinning aim to support the differentiation of chondrocytes by providing an ultrastructure similar to the fibrillar meshwork in native cartilage. In a first step, we demonstrate how the blending of chitosan with poly(ethylene oxide) (PEO) allows concentrated chitosan solution to become electrospinnable. The chitosan-based scaffolds share the chemical structure and characteristics of glycosaminoglycans, which are important structural components of the cartilage extracellular matrix. Electrospinning produced nanofibrils of ∼100 nm thickness that are closely mimicking the size of collagen fibrils in human AC. The polymer scaffolds were stabilized in physiological conditions and their stiffness was tuned by introducing the biocompatible natural crosslinker genipin. We produced scaffolds that were crosslinked with 1.0% genipin to obtain values of stiffness that were in between the stiffness of the superficial zone human AC of 600 ± 150 kPa and deep zone AC of 1854 ± 483 kPa, whereas the stiffness of 1.5% genipin crosslinked scaffold was similar to the stiffness of deep zone AC. The scaffolds were degradable, which was indicated by changes in the fibril structure and a decrease in the scaffold stiffness after seven months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes (HACs) showed a cell viability of over 90% on the scaffolds and new extracellular matrix deposited on the scaffolds.


1982 ◽  
Vol 93 (3) ◽  
pp. 921-937 ◽  
Author(s):  
A R Poole ◽  
I Pidoux ◽  
A Reiner ◽  
L Rosenberg

Monospecific antibodies to bovine cartilage proteoglycan monomer (PG) and link protein (LP) have been used with immunoperoxidase electron microscopy to study the distribution and organization of these molecules in bovine articular cartilage. The following observations were made: (a) The interterritorial matrix of the deep zone contained discrete interfibrillar particulate staining for PG and LP. This particulate staining, which was linked by faint bands of staining (for PG) or filaments (for LP), was spaced at 75- to 80-nm intervals. On collagen fibrils PG was also detected as particulate staining spaced at regular intervals (72 nm), corresponding to the periodicity of collagen cross-banding. The interfibrillar PG staining was often linked to the fibrillar PG staining by the same bands or filaments. The latter were cleaved by a proteinase-free Streptomyces hyaluronidase with the removal of much of the interfibrillar lattice. Since this enzyme has a specificity for hyaluronic acid, the observations indicate that the lattice contains a backbone of hyaluronic acid (which appeared as banded or filamentous staining) to which is attached LP and PG, the latter collapsing when the tissue is fixed, reacted with antibodies, and prepared for electron microscopy. Thishyaluronic acid is anchored to collagen fibrils at regular intervals where PG is detected on collagen. PG and LP detected by antibody in the interterritorial zones are essentially fully extractible with 4 M guanidine hydrochloride. These observations indicated that interfibrillar PG and LP is aggregated with HA in this zone. (b) The remainder of the cartilage matrix had a completely different organization of PG and LP. There was no evidence of a similar latticework based on hyaluronic acid. Instead, smaller more closely packed particulate staining for PG was seen everywhere irregularly distributed over and close to collagen fibrils. LP was almost undetectable in the territorial matrix of the deep zone, as observed previously. In the middle and superficial zones, stronger semiparticulate staining for LP was distributed over collagen fibrils. (c) In the superficial zone, reaction product for PG was distributed evenly on collagen fibrils as diffuse staining and also irregularly as particulate staining. LP was observed as semiparticulate staining over collagen fibrils. The diffuse staining for PG remained after extraction with 4 M guanidine hydrochloride. (d) In pericellular matrix, most clearly identified in middle and deep zones, the nature and organization of reaction product for PG and LP were similar to those observed in the territorial matrix, except that LP and PG were more strongly stained and amorphous staining for both components was also observed. (e) This study demonstrates striking regional variations of ultrastructural organization of PG and LP in articular cartilage...


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Cheng-Hai Zhang ◽  
Yao Gao ◽  
Unmesh Jadhav ◽  
Han-Hwa Hung ◽  
Kristina M. Holton ◽  
...  

AbstractA hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-β and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-β and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-β. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.


2020 ◽  
Author(s):  
Cheng-Hai Zhang ◽  
Yao Gao ◽  
Unmesh Jadhav ◽  
Han-Hwa Hung ◽  
Kristina M Holton ◽  
...  

AbstractA hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-β and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-β and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-β. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.


Cartilage ◽  
2020 ◽  
pp. 194760352098016
Author(s):  
Sampath Samuel Joshua Pragasam ◽  
Vijayalakshmi Venkatesan

Objective The present study aims to assess for temporal changes in tibial subchondral bone and cartilage in WNIN/Gr-Ob rats (portraying obesity, insulin resistance, dyslipidemia, impaired glucose tolerance, hypertension) in comparison with Wistar controls (WNIN) using anthropometry, micro-computed tomography (micro-CT), scanning electron microscopy (SEM), histopathology, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. Design Body weight, abdominal circumference, body mass index (BMI), lean/fat mass, serum tumor necrosis factor (TNF)-α levels were measured (ELISA), followed by ultrastructural analysis of tibial subchondral bone (micro-CT) and cartilage architecture (histopathology and SEM) in WNIN/Gr-Ob and WNIN rats with age (3, 6 and 9 months). Additionally, primary cultures of articular chondrocytes isolated from 6-month-old WNIN/Gr-Ob and WNIN rats were assessed for matrix metalloproteinase (MMP)-13 and Collagen type II (COL2A1) by immunofluorescence. Results WNIN/Gr-Ob rats exhibited frank obesity with increased BMI, lean and fat mass vis-à-vis significantly higher levels of serum TNF-α (6>9>3 months) as compared with the controls. With an increase in BMI, WNIN/Gr-Ob rats presented with tibial cartilage fibrillation, erosion, osteophyte formation (6 months) and subchondral bone cyst (9 months) confirmed by histology and SEM. An increase in subchondral trabecular bone volume (sclerosis with decreased plate porosity) was observed in all ages in WNIN/Gr-Ob rats compared to their Control. Gaining insights, primary cultures of articular chondrocytes complemented with altered cellular expressions of COL2A1 and MMP-13 from WNIN/Gr-Ob rats, indicating osteoarthritis (OA) progression. Conclusion Multiple metabolic perturbations featured in WNIN/Gr-Ob rats were effective to induce spontaneous OA-like degenerative changes affecting knee joints akin to human OA.


2005 ◽  
Vol 323 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Chisa Hidaka ◽  
Christina Cheng ◽  
Deborah Alexandre ◽  
Madhu Bhargava ◽  
Peter A. Torzilli

Sign in / Sign up

Export Citation Format

Share Document