Perfusion Enhances Functions of Bone Marrow Stromal Cells in Three-Dimensional Culture

1998 ◽  
Vol 7 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Julie Glowacki ◽  
Shuichi Mizuno ◽  
Joel S. Greenberger

Perfusion of medium through three-dimensional (3D) collagen sponges enhanced viability and function of cocultivated marrow stromal and hematopoietic cell lines. Cells of the murine bone marrow stromal cell line GPIa were cultured in novel 3D collagen sponges, made from pepsin-digested bovine skin. Static cultures of sponges were maintained in dishes with media changes every other day. Perfused sponges were contained in a glass column with medium flow set at 1.3 mL/min. In some sponges, the 32D cl3 c-fmsm (CRX-1) hematopoietic progenitor cell line was added 7 days after GPIa cells. At 7 and 16 days, light microscopic evaluation showed poor viability of cells in static sponge cultures. In perfused sponge cultures, there was greater cellularity throughout the sponge and abundant accumulation of metachromatic extracellular matrix surrounding GPIa cells. Chondroitin 6-sulfate and heparan sulfate were identified as components of the matrix by immunohistochemical methods. DNA synthesis was evaluated by 15-h exposure of cultures to bromodeoxyuridine (BrdU), with subsequent immunohistochemical localization with monoclonal anti-BrdU antibody. Cells positive for BrdU were identified at the outer surfaces of both static and perfused sponges; however, positive cells were also seen throughout the internal areas of the sponges that were perfused. These results suggest that better nutrient exchange occurred in perfused sponges. In static cocultures of GPIa and CRX-1 cells, there was no detectable viability of the IL-3–dependent CRX-1 cells; however, under perfused conditions, CRX-1 cells flourished within the sponges as documented by BrdU incorporation. Thus, medium perfusion enhanced GPIa stromal cell line viability and function in 3D collagen sponge cultures, as demonstrated by BrdU incorporation, matrix production, and support of CRX-1 cells. This novel culture system may be useful for examining the interactions of bone marrow stromal cells with extracellular matrix molecules, soluble and matrix-bound factors, and with other cell types.

Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 38-45 ◽  
Author(s):  
K Dorshkind ◽  
L Green ◽  
A Godwin ◽  
WH Fletcher

Several morphologic studies have suggested that gap junctions exist between bone marrow stromal cells. This possibility was examined by analysis of stromal cells present in the adherent layer of primary long- term lymphoid bone marrow cultures and in additional studies using a stromal cell line. Results showing that the fluorescent dye lucifer yellow, when microinjected into a single stromal cell, transferred between most other contacting stroma and that stromal cells were electronically coupled provided support that cell-cell communication occurs between these microenvironmental elements. Additional studies showed that transcripts for connexin (Cx) 43, but not for Cx26 or Cx32, were present in a stromal cell line. To examine the potential for regulated cell-cell communication between the stroma, cells were treated with interleukin-1 (IL-1), a cytokine known to affect stromal cell function, and the effects on dye transfer were examined. IL-1 treatment resulted in a reversible decrease in the ability of dye to transfer between stromal cells in contact. Taken together, these studies show that gap junctions exist between stromal cells and that their permeability can be regulated. However, gap junction-mediated cell-cell communication could not be shown between the stroma and developing lymphoid cells.


Neuroreport ◽  
2005 ◽  
Vol 16 (6) ◽  
pp. 581-584 ◽  
Author(s):  
Min Ye ◽  
Shengdi Chen ◽  
Xijin Wang ◽  
Chen Qi ◽  
Guoqiang Lu ◽  
...  

2013 ◽  
Vol 10 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Sadanand Fulzele ◽  
Paresh Chothe ◽  
Rajnikumar Sangani ◽  
Norman Chutkan ◽  
Mark Hamrick ◽  
...  

2009 ◽  
Vol 15 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Fatima N. Syed-Picard ◽  
Lisa M. Larkin ◽  
Charles M. Shaw ◽  
Ellen M. Arruda

Sign in / Sign up

Export Citation Format

Share Document