scholarly journals Three new hybrid quasi-3D and 2D higher-order shear deformation theories for free vibration analysis of functionally graded material monolayer and sandwich plates with stretching effect

2020 ◽  
Vol 29 ◽  
pp. 096369352094186
Author(s):  
Y Belkhodja ◽  
D Ouinas ◽  
H Fekirini ◽  
JA Viña Olay ◽  
M Touahmia

The present investigation brings to the readers three new hybrid higher-order shear deformation theory (HSDT) models and analyses the functionally graded material (FGM) plates. The major objective of this work is to develop three HSDTs in a unique formulation by polynomial–hyperbolic–exponential and polynomial–trigonometric forms, propose the three new HSDT models, investigate the effect of thickness stretching by considering a quasi-three-dimensional theory and analyse the free vibration of isotropic and FGM monolayer and sandwich (symmetric as well as non-symmetric, with hardcore as well as softcore) plates to demonstrate the models ability. Therefore, the Hamilton’s principle is exploited to develop equations of motion based on a displacement field of only five unknowns, of which three of them distinguished the transverse displacement membranes through the plate thickness (bending, shear and stretching displacements). In addition, the analytical solutions are found by applying the Navier approach for a simply supported boundary conditions type. The theory also considered that transverse shear deformation effect satisfied the stress-free boundary conditions on the plate-free surfaces without any requirement of shear correction factors. The used mechanical properties followed the power law and the Mori–Tanaka scheme distributions through the plate thickness. The determined results explained the effects of different non-dimensional parameters, and the proposed HSDTs predict the proper responses for monolayer and sandwich (symmetric as well as non-symmetric, with hardcore as well as softcore) FGM plates in comparison with other different plates’ theories solutions found in the literature references, thus the reliability and accuracy of the present approach are ascertained. It is obtained that the present formulations of polynomial–hyperbolic–exponential and polynomial–trigonometric forms can be further extended to all existing HSDTs models, for numerous problems related to the shear deformable effect.

Author(s):  
Le Kha Hoa ◽  
Pham Van Vinh ◽  
Nguyen Dinh Duc ◽  
Nguyen Thoi Trung ◽  
Le Truong Son ◽  
...  

A novel nonlocal shear deformation theory is established to investigate functionally graded nanoplates. The significant benefit of this theory is that it consists of only one unknown variable in its displacement formula and governing differential equation, but it can take into account both the quadratic distribution of the shear strains and stresses through the plate thickness as well as the small-scale effects on nanostructures. The numerical solutions of simply supported rectangular functionally graded material nanoplates are carried out by applying the Navier procedure. To indicate the accuracy and convergence of this theory, the present solutions have been compared with other published results. Furthermore, a deep parameter study is also carried out to exhibit the influence of some parameters on the response of the functionally graded material nanoplates.


Author(s):  
A Asanjarani ◽  
S Satouri ◽  
A Alizadeh ◽  
MH Kargarnovin

Based on the first-order shear deformation theory, this paper focuses on the free vibration behavior of two-dimensional functionally graded material truncated conical shells resting on Winkler–Pasternak foundations. The materials are assumed to be isotropic and inhomogeneous in the length and thickness directions of truncated conical shell. The material properties of the truncated conical shell are varied in these directions according to power law functions. The derived governing equations are solved using differential quadrature method. Convergence of this method is checked and the fast rate of convergence is observed. The primary results of this study are obtained for ( SS− SL), ( CS− CL), and ( CS− SL) boundary conditions and compared with those available in the literatures. Furthermore, effects of geometrical parameters, material power indexes, mechanical boundary conditions, Winkler and Pasternak foundation moduli on the nondimensional frequency parameters of the two-dimensional functionally graded material truncated conical shell are studied.


Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
Nguyen Thoi Trung ◽  
Nguyen Van Tue

In this paper, an analytical approach for nonlinear buckling and post-buckling behavior of stiffened porous functionally graded plate rested on Pasternak's elastic foundation under mechanical load in thermal environment is presented. The orthogonal and/or oblique stiffeners are attached to the surface of plate and are included in the calculation by improving the Lekhnitskii's smeared stiffener technique in the framework of higher-order shear deformation plate theory. The complex equilibrium and stability equations are established based on the Reddy's higher-order shear deformation plate theory and taken into account the geometrical nonlinearity of von Kármán. The solution forms of displacements satisfying the different boundary conditions are chosen, the stress function method and the Galerkin procedure are used to solve the problem. The good agreements of the present analytical solution are validated by making the comparisons of the present results with other results. In addition, the effects of porosity distribution, stiffener, volume fraction index, thermal environment, elastic foundation… on the critical buckling load and post-buckling response of porous functionally graded material plates are numerically investigated.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850049 ◽  
Author(s):  
Smita Parida ◽  
Sukesh Chandra Mohanty

This paper deals with the free vibration and buckling analysis of functionally graded material (FGM) plates, resting on the Winkler–Pasternak elastic foundation. The higher order shear deformation plate theory (HSPT) is adopted for the realistic variation of transverse displacement through the thickness, using the power law distribution to describe the variation of the material properties. Both the effects of shear deformation and rotary inertia are considered. In the present model, the plate is discretised into [Formula: see text] eight noded serendipity quadratic elements with seven nodal degrees of freedom (DOFs). The validation study is carried out by comparing the calculated values with those given in the literature. The effects of various parameters like the Winkler and Pasternak modulus coefficients, volume fraction index, aspect ratio, thickness ratio and different boundary conditions on the behaviour of the FGM plates are studied.


Sign in / Sign up

Export Citation Format

Share Document