Thermal Stability of Optically Transparent Alpha-Zirconium Phosphate/Poly(methyl methacrylate) Nanocomposites with High Particle Loading

2017 ◽  
Vol 25 (4) ◽  
pp. 267-272 ◽  
Author(s):  
Logan C. Hatanaka ◽  
Agustin Diaz ◽  
Qingsheng Wang ◽  
Zhengdong Cheng ◽  
M. Sam Mannan

Polymeric nanocomposites have gained attention over the past few decades for their enhanced thermal stability and degradation. However, the reactions involved in a polymer nanocomposite can vary significantly from system to system, making it necessary to investigate novel nanofillers in search for more effective materials. Nanocomposites comprised of alpha-zirconium phosphate (ZrP) nanosheets in poly (methyl methacrylate) (PMMA) were prepared with a wide range of nanoparticle loadings (0, 5, 10, and 30 wt.% ZrP in PMMA). The ZrP nanocomposites were characterized using UV-visible spectroscopy (UV-vis), x-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Nanocomposites were well dispersed and optically transparent as shown by XRD and UV-vis. However in the UV region, transparent ZrP nanocomposites possessed excellent UV scattering properties, significantly reducing the transmittance of UV-light, while remaining transparent to the visual spectrum. Thermal stability studies using TGA and DTG showed the peak mass loss rate (PMLR) was reduced by 10% and simultaneously shifted to higher temperatures by 41 °C. Since the nanocomposites in this work cover such a large range of ZrP loadings, large amounts of high-temperature residuals were encountered after TGA studies, indicating that the high loading ZrP nanocomposites are largely noncombustible. In addition, DSC studies showed that ZrP content does affect the glass transition temperature, but not enough to limit the application in which ZrP nanocomposites could be used. These results point to ZrP nanocomposites being useful as polymer replacements, behaving like polymers until the event of a fire, in which case they are largely noncombustible.

2021 ◽  
pp. 096739112110147
Author(s):  
Ufuk Abaci ◽  
H Yuksel Guney ◽  
Mesut Yilmazoglu

The effect of plasticizer on dielectric properties of poly(methyl methacrylate) (PMMA)/titanium dioxide (TiO2) composites was investigated. Propylene carbonate (PC) was used as plasticizer in the samples which were prepared with the conventional solvent casting technique. Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX) and Differential scanning calorimetry (DSC) analyses and LCR Meter measurements (performed between 300 K and 400 K), were conducted to examine the properties of the composites. With the addition of plasticizer, the thermal properties have changed and the dielectric constant of the composite has increased significantly. The glass transition temperature of pure PMMA measured 121.7°C and this value did not change significantly with the addition of TiO2, however, 112°C was measured in the sample with the addition 4 ml of PC. While the dielectric constant of pure PMMA was 3.64, the ε′ value increased to 5.66 with the addition of TiO2 and reached 12.6 with the addition of 4 ml PC. These changes have been attributed to increase in amorphous ratio that facilitates polymer dipolar and segmental mobility.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Gamze Barim ◽  
Mustafa Gokhun Yayla

Methacrylates have high glass transition temperature (Tg) values and high thermal stability. A new methacrylate copolymer, poly(4-acetylphenyl methacrylate-co-ethyl methacrylate) (APMA-co-EMA), was synthesized. The thermal behaviors of copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. They behaved as new single polymers with singleTg’s and the thermal stability of the copolymers increased with increasing 4-acetylphenyl methacrylate (APMA) fraction, leading to the manufacture of copolymers with desiredTgvalues. Structure and composition of copolymers for a wide range of monomer feed ratios were determined by Fourier transform infrared (FT-IR) and1H-nuclear magnetic resonance (1H-NMR) spectroscopic techniques. Copolymerization reactions were continued up to 40% conversions. The monomer reactivity ratios for copolymer system were determined by the Kelen-Tüdös (ra(APMA)=0.81;rb(EMA)=0.61) and extended Kelen-Tüdös (ra=0.77;rb=0.54) methods and a nonlinear least squares (ra=0.74;rb=0.49) method.


2018 ◽  
Vol 36 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Sunil S Suresh ◽  
Smita Mohanty ◽  
Sanjay K Nayak

The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.


RSC Advances ◽  
2019 ◽  
Vol 9 (61) ◽  
pp. 35532-35538 ◽  
Author(s):  
Dinghua Yu ◽  
Juan Zhao ◽  
Wenjuan Wang ◽  
Jingjie Qi ◽  
Yi Hu

With bio-based monoester of acrylated isosorbide as the comonomer, copolymerized poly(methyl methacrylate) showed improved thermal stability and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document