Optically transparent and lightweight nanocomposite substrate of poly(methyl methacrylate-co-acrylonitrile)/MWCNT for optoelectronic applications: an experimental and theoretical insight

Author(s):  
Uday Shankar ◽  
Sushanta K. Sethi ◽  
Bhanu P. Singh ◽  
Ashok Kumar ◽  
Gaurav Manik ◽  
...  

An optically transparent material with enhanced physical-mechanical properties was synthesized, which is based on the in situ formed sequential interpenetrating polymer networks of poly(methyl methacrylate)/polyurethane with an oligoester component. The kinetic features of polymerization of methyl methacrylate in these systems were studied. It was established that the polymerization rate of methyl methacrylate increases with an increase in the content of a polyurethane component, which results from an increase in the system viscosity. Irrespective of the content of polyurethane (15, 20 or 25 wt.%), optically transparent materials with a light transmission coefficient of about 90% were formed. The method of dynamic mechanical analysis showed that the modification of cross-linked poly(methyl methacrylate) with cross-linked polyurethane led to a decrease in the value of the elastic modulus; the value of the loss modulus being increased with an increase in polyurethane content. This indicated bot a decrease in fragility and the improvement in impact strength of the glass-like material. According to the study of physical-mechanical properties of the materials, the presence of polyurethane in their composition resulted in an increase in the impact strength and relative breaking elongation and in the reduction of the Young modulus. It was found that the interpenetrating polymer network containing 20% of polyurethane showed the best values of breaking strength, breaking elongation and Charpy impact.


1993 ◽  
Vol 14 (5) ◽  
pp. 402-409 ◽  
Author(s):  
Hongy Lin ◽  
Delbert E. Day ◽  
James O. Stoffer

Author(s):  
В.П. Смагин ◽  
Н.С. Еремина ◽  
М.С. Леонов

AbstractThe method of agents arising directly in the (poly)methyl methacrylate medium is used to synthesize ZnS:Cu quantum dots fixed in an optically transparent polymer matrix. The optical transmittance of the polymer composites in the visible spectral region reaches 92% (at the thickness 5 mm). The photoluminescence of the (poly)methyl methacrylate/ZnS:Cu composite is defined by defects in the crystal structure of ZnS and by the system of energy levels in the band gap of ZnS. The photoluminescence signal depends on the Cu-ion concentration, the reabsorption of radiation in ZnS and (poly)methyl methacrylate, and other factors.


2017 ◽  
Vol 25 (4) ◽  
pp. 267-272 ◽  
Author(s):  
Logan C. Hatanaka ◽  
Agustin Diaz ◽  
Qingsheng Wang ◽  
Zhengdong Cheng ◽  
M. Sam Mannan

Polymeric nanocomposites have gained attention over the past few decades for their enhanced thermal stability and degradation. However, the reactions involved in a polymer nanocomposite can vary significantly from system to system, making it necessary to investigate novel nanofillers in search for more effective materials. Nanocomposites comprised of alpha-zirconium phosphate (ZrP) nanosheets in poly (methyl methacrylate) (PMMA) were prepared with a wide range of nanoparticle loadings (0, 5, 10, and 30 wt.% ZrP in PMMA). The ZrP nanocomposites were characterized using UV-visible spectroscopy (UV-vis), x-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Nanocomposites were well dispersed and optically transparent as shown by XRD and UV-vis. However in the UV region, transparent ZrP nanocomposites possessed excellent UV scattering properties, significantly reducing the transmittance of UV-light, while remaining transparent to the visual spectrum. Thermal stability studies using TGA and DTG showed the peak mass loss rate (PMLR) was reduced by 10% and simultaneously shifted to higher temperatures by 41 °C. Since the nanocomposites in this work cover such a large range of ZrP loadings, large amounts of high-temperature residuals were encountered after TGA studies, indicating that the high loading ZrP nanocomposites are largely noncombustible. In addition, DSC studies showed that ZrP content does affect the glass transition temperature, but not enough to limit the application in which ZrP nanocomposites could be used. These results point to ZrP nanocomposites being useful as polymer replacements, behaving like polymers until the event of a fire, in which case they are largely noncombustible.


Sign in / Sign up

Export Citation Format

Share Document