scholarly journals Caveolin 1 expression favors tumor growth and is associated with poor survival in primary lung adenocarcinomas

Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769431 ◽  
Author(s):  
Eleonora Duregon ◽  
Rebecca Senetta ◽  
Luca Bertero ◽  
Benedetta Bussolati ◽  
Laura Annaratone ◽  
...  

Despite the consolidated clinico-pathological correlates of Caveolin 1 expression in non–small cell lung cancer, the available data on the role of Caveolin 1 in relation to proliferation, migration, and metastasis in lung adenocarcinoma cells is still scant. Here, we aimed to confirm whether Caveolin 1 may act as a promoter of cell growth in human lung adenocarcinoma using in vitro and in vivo models, supported by a survival analysis of Caveolin 1 expression in a series of 116 primary lung adenocarcinomas. The silencing of endogenous Caveolin 1 expression in H522 lung adenocarcinoma cells through stable shRNA transfection significantly inhibited cellular proliferation in vitro and in vivo, in a lung adenocarcinoma xenograft mouse model. The bioluminescence imaging analysis revealed that tumors derived from Caveolin 1 shRNA-transfected cells grew slower than control xenografts. However, this difference progressively diminished over time and was definitively lost after 21 days. This was consistent with a progressive Caveolin 1 re-expression, which started at day 7. The association between the restored expression of Caveolin 1 and the restart of tumor growth in vivo supports the booster role of Caveolin 1 in lung adenocarcinoma progression. To further confirm this role, Caveolin 1 expression was assessed by immunohistochemistry in a series of 116 human lung adenocarcinomas. Positive Caveolin 1 tumors accounted for 20% of cases and were associated with a significantly worse overall survival compared to Caveolin 1-negative cancers. Taken together, these data highlight that Caveolin 1 expression confers a proliferative advantage in lung adenocarcinoma cells, thus fostering increased tumor aggressiveness.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Tao Chen ◽  
Fu-Kuan Zhong

Objective. To determine the expression levels of KIF18A in lung adenocarcinoma and its relationship with the clinicopathologic features of patients undergoing radical colectomy and explore the potential role in the progression of lung adenocarcinoma. Methods. Immunohistochemical assays were performed to explore the expression levels of KIF18A in 82 samples of lung adenocarcinoma and corresponding normal tissues. According to the levels of KIF18A expression in lung adenocarcinoma tissue samples, patients were classified into the KIF18A high expression group and low expression group. Clinical data related to the perioperative clinical features (age, gender, smoking, tumor size, differentiation, clinical stage, and lymph node metastasis), the potential correlation between KIF18A expression levels, and clinical features were analyzed, and the effects of KIF18A on lung adenocarcinoma cell proliferation, migration, and invasion were measured by colony formation assay, MTT assay, wound healing assay, and transwell assays. The possible effects of KIF18A on tumor growth and metastasis were measured in mice through tumor growth and tumor metastasis assays in vivo. Results. KIF18A in lung adenocarcinoma tissues. Further, KIF18A was significantly associated to clinical characteristic features including the tumor size (P=0.033) and clinical stage (P=0.041) of patients with lung adenocarcinoma. Our data also investigated that KIF18A depletion dramatically impairs the proliferation, migration, and invasion capacity of lung adenocarcinoma cells in vitro and inhibits tumor growth and metastasis in mice. Conclusions. Our study reveals the involvement of KIF18A in the progression and metastasis of lung adenocarcinoma and provides a novel therapeutic target for the treatment of lung adenocarcinoma.


2020 ◽  
Author(s):  
Shuang Qu ◽  
Zichen Jiao ◽  
Geng Lu ◽  
Bing Yao ◽  
Ting Wang ◽  
...  

ABSTRACTAlthough blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the efficacy of such immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism underlying the limited efficacy of PD-L1 inhibitors remains unclear. Here, we show that human lung adenocarcinoma, regardless of PD-L1 protein positive or negative, all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) via alternative splicing, which promotes lung adenocarcinoma proliferation and metastasis. PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ in a manner similar to PD-L1 mRNA. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc directly binds to c-Myc and enhances c-Myc transcriptional activity downstream in lung adenocarcinoma cells. Our results provide targeting PD-L1-lnc−c-Myc axis as a novel strategy for lung cancer therapy.


2010 ◽  
Vol 79 (1) ◽  
pp. 90-94 ◽  
Author(s):  
Jolanta Saczko ◽  
Mariola Nowak ◽  
Nina Skolucka ◽  
Julita Kulbacka ◽  
Malgorzata Kotulska

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Hye-Mi Ahn ◽  
Eun-Young Choi ◽  
Youn-Jae Kim

Lung adenocarcinoma is one of the leading causes of cancer-related deaths. Despite the availability of advanced anticancer drugs for lung cancer treatment, the prognosis of patients still remains poor. There is a need to explore novel oncogenic mechanisms to overcome these therapeutic limitations. The functional experiments in vitro and in vivo were performed to evaluate the role of GPR87 expression on lung adenocarcinoma metastasis. The public lung adenocarcinoma TCGA dataset was used to determine the clinical relevance of GPR87 expression in patients with lung adenocarcinoma. GPR87 is upregulated in various cancer; however, the biological function of GPR87 has not yet been established in lung adenocarcinoma. In this study, we found that GPR87 expression is upregulated in lung adenocarcinoma and is associated with poor patient prognosis. Additionally, we showed that GPR87 overexpression promotes invasiveness and metastasis of lung adenocarcinoma cells. Furthermore, we demonstrated that AKT-eNOS-NO signaling is a novel downstream pathway of GPR87 in lung adenocarcinoma. Conversely, we confirmed that silencing of GPR87 expression suppressed these phenotypes. Our results reveal the oncogenic function of GPR87 in cancer progression and metastasis through the activation of eNOS as a key mediator. Therefore, we propose that targeting eNOS could be a novel therapeutic strategy to improve the clinical treatment of lung adenocarcinoma.


Sign in / Sign up

Export Citation Format

Share Document