human lung adenocarcinoma cells
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 41)

H-INDEX

37
(FIVE YEARS 4)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kyun Ha Kim ◽  
Ji Yeon Lee ◽  
Wan Yi Li ◽  
Sangwoo Lee ◽  
Han-Sol Jeong ◽  
...  

Abstract Background Garcinia subelliptica Merr. is a multipurpose coastal tree, the potential medicinal effects of which have been studied, including cancer suppression. Here, we present evidence that the ethanol extract of G. subelliptica Merr. (eGSM) induces autophagy in human lung adenocarcinoma cells. Methods Two different human lung adenocarcinoma cell lines, A549 and SNU2292, were treated with varying amounts of eGSM. Cytotoxicity elicited by eGSM was assessed by MTT assay and PARP degradation. Autophagy in A549 and SNU2292 was determined by western blotting for AMPK, mTOR, ULK1, and LC3. Genetic deletion of AMPKα in HEK293 cells was carried out by CRISPR. Results eGSM elicited cytotoxicity, but not apoptosis, in A549 and SNU2292 cells. eGSM increased LC3-II production in both A549 and, more extensively, SNU2292, suggesting that eGSM induces autophagy. In A549, eGSM activated AMPK, an essential autophagy activator, but not suppressed mTOR, an autophagy blocker, suggesting that eGSM induces autophagy by primarily activating the AMPK pathway in A549. By contrast, eGSM suppressed mTOR activity without activating AMPK in SNU2292, suggesting that eGSM induces autophagy by mainly suppressing mTOR in SNU2292. In HEK293 cells lacking AMPKα expression, eGSM increased LC3-II production, confirming that the autophagy induced by eGSM can occur without the AMPK pathway. Conclusion Our findings suggest that eGSM induces autophagy by activating AMPK or suppressing mTOR pathways, depending on cell types.


2021 ◽  
Author(s):  
Juliana dos Santos Oliveira ◽  
Dahienne Ferreira Oliveira ◽  
Victor Alejandro Essus ◽  
Gabriel Henrique Pereira Nunes ◽  
Leandro Honorato ◽  
...  

AbstractEven after two decades since the identification of the first giant virus, the Acanthamoeba polyphaga mimivirus (APMV), it still elude scientists. Their gigantic size and genome are unique in the whole virosphere, and many aspects of their biology are still unknown, including their possible hosts. They are cultivated in laboratories using Acanthamoeba cells as hosts, but little is known about the infectivity of these giant viruses in vertebrate cells. However, there is evidence of the possible involvement of APMV in pneumonia and activation of inflammatory pathways. Among the hundreds of prospected giant viruses members is Tupanvirus, isolated in Brazil. Its particles have a characteristically large size varying between 1.2 to 2 μm and are covered by fibrils. In the present work, we aim to study the consequences of the incubation of APMV and Tupanvirus with mammalian cells. These cells express Toll-like receptors (TLR) that are capable of recognizing lipopolysaccharides, favoring the internalization of the antigen and activation of the inflammatory system. We used a lineage of human lung adenocarcinoma cells (A549) to evaluate possible effects of TLR activation by the giant viruses and if we could detect the probable cause of the said giant-virus dependent pneumonia. Our results show that APMV and Tupanvirus (TPV) activate cellular receptors related to the Toll-like 4 type-induced inflammatory response and that the A549 cells are capable of internalizing the latter virus. Therefore, this study brings new insights into the possible interactions established between mimiviruses (here represented by APMV and Tupanvirus) and members of the innate cellular immune response.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4906
Author(s):  
Hala Samaha ◽  
Nathalie Chahine ◽  
Anatoly Petrovich Sobolev ◽  
Luigi Menghini ◽  
Hassane Makhlouf

Despite the beneficial health properties shown by Lebanese saffron, its qualitative and quantitative composition has never been investigated before. In the present study, NMR spectroscopy, together with antioxidant activity assays, were applied to evaluate the chemical composition of saffron samples of different geographical origins (Lebanon, Italy, Iran, and India) and to categorize the Lebanese saffron for the first time. The distinction between Lebanese saffron and that produced in other countries was attributed to its higher linolenic and linoleic fatty acids, glucose and picrocrocin contents. Moreover, spices produced in three different regions of the Lebanese territory have been clearly differentiated. Saffron cultivated in the Qaa region displayed a high glucose, fatty acids and polyphenols content, whereas Hermel saffron exhibited the largest rate of picrocrocin and glycosylated carotenoids. Finally, samples from Baalbeck showed lower rates for the majority of metabolites. Moreover, Lebanese saffron showed a high antioxidant activity in ABTS and DPPH assays. A low dose of saffron extract (10 µg/mL) inhibited the growth of human lung adenocarcinoma cells, probably due to the high polyphenolic content. This study highlights the quality and peculiarity of Lebanese saffron cultivated in Northern Beqaa district and allows for a good discrimination between spices produced in relatively close territory.


2021 ◽  
Vol 14 (8) ◽  
pp. 784
Author(s):  
Asier Selas ◽  
María Fuertes ◽  
Estela Melcón-Fernández ◽  
Yolanda Pérez-Pertejo ◽  
Rosa M. Reguera ◽  
...  

This work describes, for the first time, the synthesis of dialkyl (2-arylquinolin-8-yl)phosphonate derivatives. The preparation was carried out through a direct and simple process as a multicomponent Povarov reaction of aminophenylphosphonates, aldehydes, and styrenes and subsequent oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or, alternatively, by a cycloaddition reaction between phosphonate aldimines and acetylenes. Based on phosphonate group structural characteristics, considered as phosphorous isosteres of carboxylic heterocycles, they may present interesting biological properties related to cell proliferation. In the current report, a new series of dialkyl (2-arylquinolin-8-yl)phosphonates have been synthesized and their antiproliferative effect evaluated on different human cancer and embryonic cells, as well as on Leishmania infantum parasites, a eukaryotic protist responsible for visceral leishmaniasis. Thereby, the antitumor effect was assessed in human lung adenocarcinoma cells (A549), human ovarian carcinoma cells (SKOV3), and human embryonic kidney cells (HEK293) versus the non-cancerous lung fibroblasts cell line (MRC5). On the other hand, the antileishmanial activity was tested against both stages of L. infantum cell cycle, namely free-living promastigotes and intramacrophage amastigotes, using a primary culture of Balb/c splenocytes to calculate the selectivity index. Besides the antiproliferative and antileishmanial capacities, their behavior as topoisomerase 1B inhibitors has been evaluated as a possible mechanism of action.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junqian Zhang ◽  
Chunjie Li ◽  
Li Zhang ◽  
Yongqing Heng ◽  
Tong Xu ◽  
...  

Lung adenocarcinoma is the most common pathological type of lung cancer with poor patient outcomes; therefore, developing novel therapeutic agents is critically needed. Andrographolide (AD), a major active component derived from the traditional Chinese medicine (TCM) Andrographis paniculate, is a potential antitumor drug, but the role of AD in lung adenocarcinoma remains poorly understood. In the present study, we demonstrated that AD inhibited the proliferation of broad-spectrum lung cancer cell lines in a dose-dependent manner. Meanwhile, we found that a high dose of AD induced Noxa-dependent apoptosis in human lung adenocarcinoma cells (A549 and H1299). Further studies revealed that Noxa was transcriptionally activated by activating transcription factor 4 (ATF4) in AD-induced apoptosis. Knockdown of ATF4 by small interfering RNA (siRNA) significantly diminished the transactivation of Noxa as well as the apoptotic population induced by AD. These results of the present study indicated that AD induced apoptosis of human lung adenocarcinoma cells by activating the ATF4/Noxa axis and supporting the development of AD as a promising candidate for the new era of chemotherapy.


2021 ◽  
Vol 21 (05) ◽  
pp. 233-244
Author(s):  
Arun Sridhar ◽  
Dinesh Babu Manikandan ◽  
Sivagaami Palaniyappan ◽  
Rajkumar Krishnasamy Sekar ◽  
Thirumurugan Ramasamy

Fish skin mucus acts as an immunological barrier that prevents entry of pathogens. However, there are gaps in the knowledge of microbes inhabiting skin mucus constituents to invade the host and induce pathogenecity. Hence, in the present study, skin and skin mucus of three freshwater fishes Cyprinus carpio, Labeo rohita, Cirrhinus mrigala was analyzed to compare histology and mucus activity against cancer cells. The skin mucus elemental composition and its influence on bacterial growth were also investigated. Histological examination of fish skin showed the presence of mucus secreting cells and differences in the distribution of cells were clearly seen depending on fish species. The cytotoxic potential of lyophilized skin mucus against human lung adenocarcinoma cells revealed a higher percentage of cell death at 1000 µg mL-1 in C. mrigala skin mucus when comparing other two fish species. Elemental analysis of lyophilized skin mucus through Field Emission Scanning Electron Microscope coupled with Energy Dispersive X-ray (FESEM-EDX) confirmed the presence of carbon, nitrogen, oxygen and sulfur in C. carpio and C. mrigala. In the case of L. rohita, the element sulfur was absent. The results of bacterial growth in autoclaved skin mucus demonstrated an initial reduction in bacterial population and gradually increased over time. Initial reduction in bacteria might be due to the presence of inhibitory molecules in fish skin mucus. Subsequently, the bacteria utilize the elemental composition of skin mucus as a nutrient source to increase their growth. Study findings suggest that the presence of bioactive compounds in lyophilized skin mucus hinder the proliferation of cancer cells. Nevertheless, after autoclaving the skin mucus components, it supports the growth of bacteria due to the absence of immune molecules. The present study represents the knowledge of skin mucus composition, which could be explored further to understand how pathogens overcome the skin mucus barrier.


Sign in / Sign up

Export Citation Format

Share Document