Theoretical modeling and analysis of a 2-degree-of-freedom hybrid piezoelectric–electromagnetic vibration energy harvester with a driven beam

2018 ◽  
Vol 29 (11) ◽  
pp. 2465-2476 ◽  
Author(s):  
Dan Zhao ◽  
Shaogang Liu ◽  
Qingtao Xu ◽  
Wenyi Sun ◽  
Tao Wang ◽  
...  

In the article, a novel 2-degree-of-freedom hybrid piecewise-linear piezoelectric–electromagnetic vibration energy harvester is presented to achieve better energy harvesting efficiency. The harvester consists of a primary piezoelectric energy harvesting device to which an electromagnetic mechanism is coupled to improve the integral energy output, and a driven beam is mounted to broaden the operating bandwidth by inducing nonlinearity. Considering the piezoelectric–electromagnetic coupling characteristics and the nonlinear factors, dynamic equations of the system are established. Expressions of the output power are deduced though averaging method. Characteristic parameters are analyzed theoretically, including the piezoelectric parameters, electromagnetic parameters, and the piecewise-linearity. Frequency sweep excitation test is conducted on the setup at an excitation acceleration of 0.3 g and results demonstrate that two resonant regions are obtained with the peak output power of 5.4 and 6.49 mW, respectively, and the operating bandwidth is increased by 8 Hz. Moreover, though adjusting the stiffness of the driven beam k3 and the gap between the primary beam and the driven beam d, the performance of the harvester can be further optimized.

2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


Author(s):  
Xia Li ◽  
Zhiyuan Li ◽  
Benxue Liu ◽  
Jun Zhang ◽  
Weidong Zhu

To widen the operation wind speed bandwidth of a classic vortex shedding induced vibration piezoelectric energy harvester, a piezoelectric-electromagnetic hybrid energy harvester based on vortex shedding induced vibration is designed. The hybrid vortex shedding induced vibration energy harvester (HVSIVEH) includes a vortex shedding induced vibration piezoelectric energy harvester (VSIVPEH) and an electromagnetic vibration energy harvester (EVEH). The electromechanical coupled vibration model of the hybrid structure was established. By comparing the variations of the output power as a function of the wind speed of the HVSIVEH and the classic VSIVPEH, it is found that the power response curve of the HVSIVEH has two peaks. The hybrid structure can broaden the working wind speed range. The lower the requirement on the output power level, the more obvious the effect of widening the wind speed range. By the solution and analysis of the electromechanical coupled model, better values of related parameters of the HVSIVEH are obtained. The first and second peaks of the output power of the HVSIVEH show better values of 1.9 and 2.2 mW, respectively, under these parameters.


2018 ◽  
Vol 30 (2) ◽  
pp. 308-322 ◽  
Author(s):  
Hyun Soo Kim ◽  
Wooseok Ryu ◽  
Shi-baek Park ◽  
Yong Je Choi

This article presents a new design method of a planar 3-degree-of-freedom serial manipulator-type electromagnetic vibration energy harvester in which any desired ratio of power peaks and three target resonant frequencies can be specified arbitrarily. The design of the harvester aims to achieve minimum difference between the power peaks generated at target frequencies. The geometrical positions of three normal modes are first determined and the corresponding stiffness matrix of the harvester is found. Second, the stiffness matrix can be synthesized by three serially connected torsional springs. Third, the leaf hinge joints corresponding to torsional springs are designed using the newly developed design equations. Finally, the array and the locations of the magnets are found using the sequential quadratic programming (SQP) algorithm. The experiments are conducted to verify the design method. Three resonant frequencies are measured at 23.4, 29.2, and 34.8 Hz comparing to the target frequencies of 25, 30, and 35 Hz. The peak powers of 1.28, 0.89, and 1.32 mW are obtained across the optimal load resistor of 1.01 kΩ under the condition of the constant acceleration of 1.5 m/s2.


2019 ◽  
Vol 30 (7) ◽  
pp. 1105-1114 ◽  
Author(s):  
Dongxing Cao ◽  
Xiangying Guo ◽  
Wenhua Hu

The transformation of waste vibration energy into low-power electricity has been intensely researched over the last decade to enable self-sustained wireless electronic components. Many kinds of nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. The negative stiffness vibration isolator, as a kind of passive vibration isolator, has undergone extensive investigation because of its low-frequency isolator characteristics. In this article, a novel broadband piezoelectric vibration energy harvester, which can be used for low-frequency ambient mechanical energy harvesting, is designed, and its dynamic responses are analyzed based on the advantage of the negative stiffness vibration isolator. The multi-scale perturbation method is applied to solve the electromechanical equations of the piezoelectric vibration energy harvester and obtain approximate analytical solutions. Solutions based on the analytical method and numerical simulations reveal the characteristics of significant broadband performance. The effects of the various system parameters on the frequency responses and output voltage of the piezoelectric vibration energy harvester system are investigated in detail, and the vibration isolation ability is verified by experimental measurements. It was concluded that the proposed piezoelectric vibration energy harvester achieved broadband vibration energy harvesting in the low-frequency vibration range.


Sign in / Sign up

Export Citation Format

Share Document