Fuzzy Controller for Active Vibration Control of Cylindrical Shells

Author(s):  
Hua Li ◽  
Kaiming Hu

Cylindrical shells are widely used engineering structures, such as pipelines, tubes, submarine shells, etc. The active vibration control of these structures are important methods for ensuring their performance. In this paper, a fuzzy logic controller was proposed for the active vibration control of cylindrical shells. Piezoelectric actuators were laminated on the shell surface for the generation of control force. Then, the mathematical model of the model control force were given based the inverse piezoelectric effects and modal summation method. The transfer equation of the controlled system was derived from the modal equation. The fuzzy logic controller was then designed, in which the centroid method was used for defuzification. The proposed controller was then implemented in Matlab/Simulink environment, followed by case studies to evaluate its performance. Numerical results shown the effectiveness of fuzzy logic controller on active vibration of smart cylindrical shells. For all evaluated cases, more than 33% of amplitude reduction were achieved.

Author(s):  
Manu Sharma ◽  
S. P. Singh ◽  
B. L. Sachdeva

This paper presents fuzzy logic based velocity feedback control for active vibration control of beams. The controller is first developed for a single degree of freedom spring mass system. Rule base consisting of three simple rules based on velocity is used. It is found theoretically as well as experimentally, that for the same settling time maximum applied force required by fuzzy logic controller is much less than that required by direct negative velocity feedback control. The fuzzy controller so developed is then applied for active vibration control of beams. The controller is implemented experimentally on a test beam and the results are found satisfactory. The test system consists of a cantilevered beam with piezoelectric sensor and actuator patches mounted in collocated fashion. The fuzzy logic controller is based on modal velocity of the beam. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is output from the inference engine. The issues related to design of fuzzy logic controller based on velocity are discussed.


2020 ◽  
Vol 31 (10) ◽  
pp. 1298-1313
Author(s):  
Saurav Sharma ◽  
Anuruddh Kumar ◽  
Rajeev Kumar ◽  
Mohammad Talha ◽  
Rahul Vaish

In this article, active vibration control of a piezo laminated smart structure is presented using poling tuned piezoelectric material. To improve the performance of existing materials and utilize the actuation potential of different modes of operation ( d31, d33, and d15), simultaneously, the poling direction of the piezoelectric materials is altered and an optimum poling direction is found. Poling tuned piezoelectric patches at the top and bottom layers of the structure are mounted which act as sensors and actuators, respectively. The computational technique used for calculating the time history of the structure is a finite element method. A fuzzy logic controller is developed to compute the appropriate actuator signal as output while taking sensor voltage and its derivative as input. The controlled response due to this fuzzy logic controller is calculated for different piezoelectric materials under consideration and the performance of these materials in active vibration control is compared. Influence of poling angle on the controlled response of the structure is scrutinized and is found to vary from material to material. A large enhancement due to poling tuning is seen in the properties of Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-0.35PT), whereas other materials show very less improvement or even decay in the properties.


2014 ◽  
Vol 513-517 ◽  
pp. 2659-2662
Author(s):  
Tao Hu ◽  
Qi Bai Huang ◽  
Shan De Li

Active control of vibration has been the subject of a lot of research in recent years. This study presents a fuzzy logic controller (FLC) to minimize structural vibration using collocated piezoelectric actuator/sensor pairs. The proposed fuzzy controller increases the damping of the structures to minimize certain responses. The PID controller is used as a contrast controller to the FLC. The numerical simulation results show that the fuzzy approach is much portable than PID method. In summary, a novel vibration absorption scheme using fuzzy logic has been demonstrated to significantly enhance the performance of a flexible structure with resonant response.


2014 ◽  
Vol 598 ◽  
pp. 529-533
Author(s):  
Erdi Gülbahçe ◽  
Mehmet Çelik ◽  
Mustafa Tinkir

The main purpose of this study is to prepare mathematical model for active vibration control of a structure. This paper presents the numerical and experimental modal analysis of aluminum cantilever beam in order to investigate the dynamic characteristics of the structure. The results will be used for active vibration control of structure’s experimental setup. Experimental natural frequencies are obtained and compared to verify the proposed numerical model by using modal analysis results. MATLAB System Identification Toolbox and ANSYS harmonic response function are used together to estimate beam’s equations of motion which include its amplitude, frequency and phase angle values. Moreover, the mathematical model of beam is simulated in MATLAB/Simulink software to determine the dynamic behavior of the proposed system. Furthermore, another prediction model approach with multiple input and single output is used to find the realistic behavior of beam via an adaptive neural-network-based fuzzy logic inference system, in addition, impulse responses of the proposed models are compared and the control block diagram for active vibration control is implemented. As a first iteration, PID type controller is designed to suppress vibrations against the disturbance input. The results of modal analysis, the prediction models, controlled and uncontrolled system responses are presented in graphics and tables for obtaining a sample numerical active vibration control.


Author(s):  
Kazuto Seto ◽  
Yoshihiro Toba ◽  
Fumio Doi

Abstract In order to realize living comfort of tall buildings by reducing the vibration of higher floors by strong winds, this paper proposes a new method of vibration control for flexible structures with a large scale. The higher a tall building the lower its natural frequency. Since obtaining sufficient force to control the lower frequency vibrations of tall buildings is a difficult task, controlling the vibration of ultra-tall buildings using active dynamic absorbers is nearly impossible. This problem can be overcome by placing actuators between a pair of two or three ultra-tall buildings and using the vibrational force of each building to offset the vibrational movement of its paired mate. Therefore, it is able to obtain enough control force under the low frequency when the proposed method is used. In this paper, a reduced-order model expressed by 2DOF system under taking into consideration for preventing spillover instability is applied to control each flexible structure. The LQ control theory is applied to the design of such a control system. The effectiveness of this method is demonstrated theoretically as well as experimentally.


Author(s):  
Shahin Mohammadrezazadeh ◽  
Ali Asghar Jafari

In this paper for the first time, active vibration control of rotating laminated composite cylindrical shells embedded with magnetostrictive layers as actuators by means of first-order shear deformation theory is studied. Vibration equations of the rotating shell are extracted using Hamilton principle considering the effects of initial hoop tension, Coriolis, and centrifugal forces. The vibration differential equations are reduced to algebraic ones through Galerkin method. The validity of the study is proved by the comparison of some results with the literature results. Eventually, the influence of several parameters on damping characteristics and vibration responses are investigated in detail.


AIAA Journal ◽  
1996 ◽  
Vol 34 (5) ◽  
pp. 1034-1040 ◽  
Author(s):  
Venkata R. Sonti ◽  
James D. Jones

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Wenhao Sun ◽  
Feng Zhang ◽  
Weidong Zhu ◽  
Han Wang ◽  
Shunan Luo ◽  
...  

A modal analysis (MA) was preconsidered to determine a novel active vibration control (AVC) structure of multistage gear transmission system (MGTS) and an appropriate actuating position for the piezoelectric actuator (PZT); the results of the calculating method and the finite element method (FEM) were compared to validate the reliability of MA. The controllers based on different control algorithms were designed to drive the PZTs to output the control force for suppressing the host structure vibrations. To analyze the feasibility of the applied control schemes and discuss the control effects dominated by the different control algorithms, a series of active vibration control numerical simulations were studied. The cosimulation results validate the practicability of the proposed control schemes and provide a forcible guidance for the further experimental works.


Sign in / Sign up

Export Citation Format

Share Document