Denture Plaque and Adherence of Candida Albicans To Denture-Base Materials in Vivo and in Vitro

1999 ◽  
Vol 10 (1) ◽  
pp. 99-116 ◽  
Author(s):  
D.R. Radford ◽  
SJ Challacombe ◽  
J.D. Walter

The aim of this paper is to review our understanding of the mechanisms and clinical significance of adhesion of C. albicans to denture-base materials in relation to denture plaque and denture-related stomatitis. Earlier reports in the literature of a 65% prevalence level of denture-related stomatitis seem to be exaggerated. More recent studies indicate that denture-related stomatitis is considerably less common, particularly in normal healthy subjects. The etiology of the condition is discussed in this review, and although much of the literature supports the view that the condition is strongly associated with C. albicans, this is not always so. In some subjects, the cause appears to be related to a non-specific plaque. This review also considers the role of denture plaque in the pathogenesis of denture-related stomatitis, the sequential development of denture plaque, and its colonization by Candida organisms. Designing controlled in vivo studies is difficult, and as a consequence, many investigators have had to resort to in vitro studies. The majority of these studies have attempted to investigate the hydrophobicity of C. albicans, relating the surface free-energy of denture-base materials, particularly acrylic resin, to that of the organism. Surprisingly little work has been directed at surface roughness and how it affects retention of organisms. Further, no attention has been paid to the properties and character of the surface, other than average surface roughness, as it affects adhesion. A comparison of results from in vitro studies on the effect on adhesion of pre-coating the surfaces of denture-base materials with saliva has produced equivocal conclusions. This is largely due to little standardization of experimental protocols between studies, particularly in the collection and handling of the saliva used. In conclusion, the review strongly supports the suggestion that adherence of C. albicans to denture-base materials in vitro is related to the hydrophobicity of the organism. The clinical significance of the observation and the mechanisms for the development and maturation of denture plaque are yet to be understood. There is a clear need for further investigation of other factors that may moderate the adhesion of organisms and subsequent colonization of denture-base materials.

2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2017 ◽  
Vol 52 ◽  
pp. 44-50 ◽  
Author(s):  
Zhi-Jun Liu ◽  
Jing Bai ◽  
Feng-Li Liu ◽  
Xiang-Yang Zhang ◽  
Jing-Zhang Wang

1981 ◽  
Author(s):  
E Szwarcer ◽  
R Giuliani ◽  
E Martinez Aquino

For studying heparin effect on blood coagulation and on inhibitors, the drug was added at increasing amounts to a normal platelet poor plasma (PPP), and to plasmas of patients with variable amounts of clotting factors (cirrhotic, pregnant, etc) -IN VITRO STUDIES-, and infused to the same individuals -IN VIVO STUDIES-. Modifications on two clotting assays (KCCT-TT) were compared to heparin potentiating effect on AntiXa (Denson & Bonnar tech).When studied IN VITRO, the sensibility of KCCT, TT, and AntiXa techniques for heparin measurement was similar. IN VIVO, an apparently greater sensibility using AntiXa technique was observed.For determining if this phenomena was related to a specific enhanced potentiating effect of the inhibitor against Xa, exerted by heparin IN VIVO, experiences were repeated IN VITRO and IN VIVO, measuring heparin effect on KCCT, TT, and on the inhibitor, studied against Xa and thrombin. A personal technique was used for the measurement of Antithrombin III heparin potentiating effect, using diluted platelet poor test plasma, heated (56°C 15’) and incubated with thrombin during a fixed time, and reading residual thrombin on citrated human PPP. IN VITRO, all techniques were similar in their ability to show heparin presence.IN VIVO, the potentiating effect of heparin on the inhibitor, measured against Xa or thrombin, was greater than the changes obtained on KCCT or TT.So, AntiXa-Antithrombin III techniques seem to be more sensitive for heparin measurement IN VIVO.This “dissociation” of results in between the potentiating effect on the inhibitor, that is not simultaneously exerted on global coagulation, is interpreted as a heparin pro-coagulant effect, exerted by the drug IN VIVO.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
T. J. Corbett ◽  
B. J. Doyle ◽  
A. Callanan ◽  
M. T. Walsh ◽  
T. M. McGloughlin

In vitro studies of abdominal aortic aneurysm (AAA) have been widely reported. Frequently mock artery models with intraluminal thrombus (ILT) analogs are used to mimic the in vivo AAA. While the models used may be physiological, their properties are frequently either not reported or investigated. This study is concerned with the testing and characterization of previously used vessel analog materials and the development of new materials for the manufacture of AAA models. These materials were used in conjunction with a previously validated injection molding technique to manufacture AAA models of ideal geometry. To determine the model properties (stiffness (β) and compliance), the diameter change of each AAA model was investigated under incrementally increasing internal pressures and compared with published in vivo studies to determine if the models behaved physiologically. A FEA study was implemented to determine if the pressure-diameter change behavior of the models could be predicted numerically. ILT analogs were also manufactured and characterized. Ideal models were manufactured with ILT analog internal to the aneurysm region, and the effect of the ILT analog on the model compliance and stiffness was investigated. The wall materials had similar properties (Einit 2.22 MPa and 1.57 MPa) to aortic tissue at physiological pressures (1.8 MPa (from literature)). ILT analogs had a similar Young’s modulus (0.24 MPa and 0.33 MPa) to the medial layer of ILT (0.28 MPa (from literature)). All models had aneurysm sac compliance (2.62–8.01×10−4/mm Hg) in the physiological range (1.8–9.4×10−4/mm Hg (from literature)). The necks of the AAA models had similar stiffness (20.44–29.83) to healthy aortas (17.5±5.5 (from literature)). Good agreement was seen between the diameter changes due to pressurization in the experimental and FEA wall models with a maximum difference of 7.3% at 120 mm Hg. It was also determined that the inclusion of ILT analog in the sac of the models could have an effect on the compliance of the model neck. Ideal AAA models with physiological properties were manufactured. The behavior of these models due to pressurization was predicted using finite element analysis, validating this technique for the future design of realistic physiological AAA models. Addition of ILT analogs in the aneurysm sac was shown to affect neck behavior. This could have implications for endovascular AAA repair due to the importance of the neck for stent-graft fixation.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3305
Author(s):  
Pablo Kraemer Fernandez ◽  
Alexey Unkovskiy ◽  
Viola Benkendorff ◽  
Andrea Klink ◽  
Sebastian Spintzyk

(1) Background: To date, no information on the polishability of milled and 3D-printed complete denture bases has been provided, which is relevant in terms of plaque accumulation. (2) Methods: three groups (n = 30) were manufactured using the cold-polymerization polymethilmethacrilate, milling (SM) and 3D printing (AM). 10 specimens of each group were left untreated (reference). 10 more specimens were pre-polished (intermediate polishing) and 10 final specimens were highgloss polished. An additional 20 specimens were 3D printed and coated with the liquid resin (coated), 10 of which were additionally polished (coated + polished). For each group Ra and Rz values, gloss value and REM images were obtained. (3). The “highgloss-polished” specimens showed statistically lower Ra and Rz values in the SM, followed by AM and conventional groups. In the AM group statistically lower surfaces roughness was revealed for highgloss-polished, “coated + polished”, and “coated” specimens, respectively. (4) Conclusions: The milled specimens demonstrated superiors surface characteristics than 3D printed and conventionally produced after polishing. The polished specimens demonstrated superior surface characteristics over coated specimens. However, the surface roughness by both polished and coated specimens was within the clinically relevant threshold of 0.2 µm.


1992 ◽  
Vol 263 (2) ◽  
pp. G230-G239 ◽  
Author(s):  
M. J. Vassallo ◽  
M. Camilleri ◽  
C. M. Prather ◽  
R. B. Hanson ◽  
G. M. Thomforde

Our aim was to measure axial forces in the stomach and to evaluate their relation to circumferential contractions of the gastric walls and the emptying of gastric content. We used a combination of simultaneous radioscintigraphy, gastroduodenal manometry, and an axial force transducer with an inflatable 2-ml balloon fluoroscopically placed in the antrum. In vitro studies demonstrated that the axial force transducer records only antegrade forces along the longitudinal axis of this probe in an intensity-dependent manner. In vivo studies were performed in five healthy subjects for at least 3 h after ingestion of radiolabeled meals. When administered separately, the emptying of liquids or solids from the stomach is associated with generation of antral axial forces and coincident phasic pressure activity; however, almost 20% (average) of gastric axial forces during emptying of liquids or solids are unassociated with proximal or distal antral pressure activity ("isolated" forces). High amplitude antral axial forces and pressures occur during both lag and postlag emptying phases. During emptying of liquids, there is a trend for axial forces to be coincident more often with proximal than with distal antral pressure activity and vice versa for the emptying of solids (P = 0.015). These data suggest that when placed in the antrum, the transducer can semiquantitatively record axial forces during gastric emptying. By combining these observations with the data from in vitro studies, it appears that axial forces predominantly result from traction on the balloon by the longitudinal vector resulting from circumferential gastric contractions. The combination of radioscintigraphy and measurement of antral axial forces is a promising method to evaluate mechanical forces involved in the emptying of the human stomach.


1985 ◽  
Vol 115 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Ping C. Lee ◽  
Stephen P. Brooks ◽  
Ok Kim ◽  
Leo A. Heitlinger ◽  
Emanuel Lebenthal

Author(s):  
Ismail Hadisoebroto Dilogo ◽  
Jessica Fiolin

Background: The therapeutic value of mesenchymal stem cells (MSCs) in tissue engineering and regenerative medicine is attributable in part to paracrine pathways triggered by several secreted factors secreted into culture media. The secreted factor here is known as the conditioned medium (CM) or secretome. Objectives: This review is aimed to investigate and summarise the in-vitro, pre-clinical in-vivo studies regarding the role of CM-MSC in bone regeneration from 2007 until 2018 Data Sources: A systematic literature search on PubMed, MEDLINE, OVID, Scopus and Cochrane library was carried out by using search terms: Secretome, conditioned medium, mesenchymal stem cell, bone healing, osteogenic, osteogenesis. Methods: A total of 611 articles were reviewed. Ten articles were identified as relevant for this systematic literature review. Results: Three tables of studies were constructed for in vitro studies and in-vivo studies. Conclusion: All of the included in-vitro studies and in-vivo studies have shown a promoting effect of bone regeneration at various stages. Although there are no clinical studies regarding the use of CM-MSC in the human bone regeneration that have been conducted, transplantation of secretome has shown a promising result in the acceleration of bone healing process.


2018 ◽  
Vol 2 (2) ◽  
pp. 150-161
Author(s):  
Bestun Akram ◽  
Rizgar Hasan

Adequate retention is a basic requirement for the acceptance of complete denture. The aim of this study was to evaluate the retention quality of fluid denture base materials and compare it with conventional acrylic denture base materials Method: Sixteen edentulous male patients with an age 45-60 years participated in the study. For each patient two denture bases were constructed, one of them made from fluid denture base materials and the other made from hot acrylic denture base materials. A specially designed strain gauge measuring device was used to measure the force required to dislodge the two dentures from basal seats. Six measurements of retention of newly inserted denture base were recorded for each patient (three for maxillary acrylic denture base and three for maxillary fluid denture base). Results: The results of the retention test showed that the fluid denture base materials required more force in order to dislodge denture than the heat cure denture base materials, which means a significant improvement in retention quality obtained by fluid denture base materials. Conclusions: It has appeared that the fluid acrylic denture base materials produce denture base material with excellent retentive efficiency to the underlying tissue when compared to conventional denture base materials.


Sign in / Sign up

Export Citation Format

Share Document