“Validation of Artificial Intelligence Severity Assessment in Metopic Craniosynostosis”

2021 ◽  
pp. 105566562110610
Author(s):  
Alexandra Junn ◽  
Jacob Dinis ◽  
Sacha C. Hauc ◽  
Madeleine K. Bruce ◽  
Kitae E. Park ◽  
...  

Objective Several severity metrics have been developed for metopic craniosynostosis, including a recent machine learning-derived algorithm. This study assessed the diagnostic concordance between machine learning and previously published severity indices. Design Preoperative computed tomography (CT) scans of patients who underwent surgical correction of metopic craniosynostosis were quantitatively analyzed for severity. Each scan was manually measured to derive manual severity scores and also received a scaled metopic severity score (MSS) assigned by the machine learning algorithm. Regression analysis was used to correlate manually captured measurements to MSS. ROC analysis was performed for each severity metric and were compared to how accurately they distinguished cases of metopic synostosis from controls. Results In total, 194 CT scans were analyzed, 167 with metopic synostosis and 27 controls. The mean scaled MSS for the patients with metopic was 6.18 ± 2.53 compared to 0.60 ± 1.25 for controls. Multivariable regression analyses yielded an R-square of 0.66, with significant manual measurements of endocranial bifrontal angle (EBA) (P = 0.023), posterior angle of the anterior cranial fossa (p < 0.001), temporal depression angle (P = 0.042), age (P < 0.001), biparietal distance (P < 0.001), interdacryon distance (P = 0.033), and orbital width (P < 0.001). ROC analysis demonstrated a high diagnostic value of the MSS (AUC = 0.96, P < 0.001), which was comparable to other validated indices including the adjusted EBA (AUC = 0.98), EBA (AUC = 0.97), and biparietal/bitemporal ratio (AUC = 0.95). Conclusions The machine learning algorithm offers an objective assessment of morphologic severity that provides a reliable composite impression of severity. The generated score is comparable to other severity indices in ability to distinguish cases of metopic synostosis from controls.

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Sean Nurmsoo ◽  
Alessandro Guida ◽  
Alex Wong ◽  
Richard I Aviv ◽  
Andrew Demchuk ◽  
...  

Introduction: We sought to train and validate an automated machine learning algorithm for ICH segmentation and volume calculation using multicenter data. Methods: An open-source 3D deep machine learning algorithm “DeepMedic” was trained using manually segmented ICH from 208 CT scans (129 patients) from the multicenter PREDICT study. The algorithm was then validated with 125 manually segmented CT scans (48 patients) from the SPOTLIGHT study. Manual segmentation was performed with Quantomo semi-automated software. ABC/2 was measured for all studies by two neuroradiologists. Accuracy of DeepMedic segmentation was assessed using the Dice similarity coefficient. Analysis was stratified by presence of IVH. Intraclass correlation (ICC) with 95% confidence intervals (CI) assessed agreement between manual vs. DeepMedic segmentation volume; and manual segmentation and ABC/2 volume. Bland-Altman charts were analyzed for ABC/2 and DeepMedic vs. manual segmentation volumes. Results: DeepMedic demonstrated high segmentation accuracy in the training cohort (median Dice 0.96; IQR 0.95 - 0.97) and in the validation cohort (median Dice 0.91; IQR 0.86 - 0.94). Dice coefficients were not significantly different between patients with IVH in the training cohort; however was significantly worse in the validation cohort in patients with IVH (Wilcoxon p<0.001). Agreement was significantly better between DeepMedic and manual segmentation (PREDICT: ICC 0.99 [95%CI 0.99 -1.00]; SPOTLIGHT: ICC 0.98 [95%CI 0.97 - 0.99]) than between ABC/2 and manual segmentation (PREDICT: ICC 0.92 [95%CI 0.89 - 0.95]; SPOTLIGHT: ICC 0.95 [95%CI 0.93-0.97]). Improved accuracy of DeepMedic was demonstrated in Bland-Altman charts (Fig 1). Conclusion: ICH machine learning segmentation with DeepMedic is feasible and accurate; and demonstrates greater agreement with manual segmentation compared to ABC/2 volumes. Accuracy of the machine learning algorithm however is limited in patients with IVH.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


2019 ◽  
Vol XVI (4) ◽  
pp. 95-113
Author(s):  
Muhammad Tariq ◽  
Tahir Mehmood

Accurate detection, classification and mitigation of power quality (PQ) distortive events are of utmost importance for electrical utilities and corporations. An integrated mechanism is proposed in this paper for the identification of PQ distortive events. The proposed features are extracted from the waveforms of the distortive events using modified form of Stockwell’s transform. The categories of the distortive events were determined based on these feature values by applying extreme learning machine as an intelligent classifier. The proposed methodology was tested under the influence of both the noisy and noiseless environments on a database of seven thousand five hundred simulated waveforms of distortive events which classify fifteen types of PQ events such as impulses, interruptions, sags and swells, notches, oscillatory transients, harmonics, and flickering as single stage events with their possible integrations. The results of the analysis indicated satisfactory performance of the proposed method in terms of accuracy in classifying the events in addition to its reduced sensitivity under various noisy environments.


Sign in / Sign up

Export Citation Format

Share Document