Abstract WP406: Training and Validation of Deepmedic Machine Learning Tool for Automated Hematoma Segmentation and Volume Analysis on CT Using Multicenter Data

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Sean Nurmsoo ◽  
Alessandro Guida ◽  
Alex Wong ◽  
Richard I Aviv ◽  
Andrew Demchuk ◽  
...  

Introduction: We sought to train and validate an automated machine learning algorithm for ICH segmentation and volume calculation using multicenter data. Methods: An open-source 3D deep machine learning algorithm “DeepMedic” was trained using manually segmented ICH from 208 CT scans (129 patients) from the multicenter PREDICT study. The algorithm was then validated with 125 manually segmented CT scans (48 patients) from the SPOTLIGHT study. Manual segmentation was performed with Quantomo semi-automated software. ABC/2 was measured for all studies by two neuroradiologists. Accuracy of DeepMedic segmentation was assessed using the Dice similarity coefficient. Analysis was stratified by presence of IVH. Intraclass correlation (ICC) with 95% confidence intervals (CI) assessed agreement between manual vs. DeepMedic segmentation volume; and manual segmentation and ABC/2 volume. Bland-Altman charts were analyzed for ABC/2 and DeepMedic vs. manual segmentation volumes. Results: DeepMedic demonstrated high segmentation accuracy in the training cohort (median Dice 0.96; IQR 0.95 - 0.97) and in the validation cohort (median Dice 0.91; IQR 0.86 - 0.94). Dice coefficients were not significantly different between patients with IVH in the training cohort; however was significantly worse in the validation cohort in patients with IVH (Wilcoxon p<0.001). Agreement was significantly better between DeepMedic and manual segmentation (PREDICT: ICC 0.99 [95%CI 0.99 -1.00]; SPOTLIGHT: ICC 0.98 [95%CI 0.97 - 0.99]) than between ABC/2 and manual segmentation (PREDICT: ICC 0.92 [95%CI 0.89 - 0.95]; SPOTLIGHT: ICC 0.95 [95%CI 0.93-0.97]). Improved accuracy of DeepMedic was demonstrated in Bland-Altman charts (Fig 1). Conclusion: ICH machine learning segmentation with DeepMedic is feasible and accurate; and demonstrates greater agreement with manual segmentation compared to ABC/2 volumes. Accuracy of the machine learning algorithm however is limited in patients with IVH.

2019 ◽  
Author(s):  
Georgios Kaissis ◽  
Sebastian Ziegelmayer ◽  
Fabian Lohöfer ◽  
Hana Algül ◽  
Matthias Eiber ◽  
...  

AbstractPurposeTo develop a supervised machine learning algorithm capable of predicting above vs. below-median overall survival from medical imaging-derived radiomic features in a cohort of patients with pancreatic ductal adenocarcinoma (PDAC).Materials and Methods102 patients with histopathologically proven PDAC were retrospectively assessed as the training cohort and 30 prospectively enrolled patients served as the external validation cohort. Tumors were segmented in pre-operative diffusion weighted-(DW)-MRI derived ADC maps and radiomic features were extracted. A Random Forest machine learning algorithm was fit to the training cohort and tested in the external validation cohort. The histopathological subtype of the tumor samples was assessed by immunohistochemistry in 21/30 patients of the external validation cohort. Individual radiomic feature importance was evaluated.ResultsThe machine learning algorithm achieved a sensitivity of 87% and a specificity of 80% (ROC-AUC 90%) for the prediction of above- vs. below-median survival on the unseen data of the external validation cohort. Heterogeneity-related features were highly ranked by the model. Of the 21 patients for whom the histopathological subtype was determined, 8/9 patients predicted by the model to experience below-median overall survival exhibited the quasi-mesenchymal subtype, while 11/12 patients predicted to experience above-median survival exhibited a non-quasi-mesenchymal subtype (Fisher’s exact test P<0.001).ConclusionThe application of machine-learning to the radiomic analysis of DW-MRI-derived ADC maps allowed the prediction of overall survival with high diagnostic accuracy in a prospectively collected cohort. The high overlap of clinically relevant histopathological subtypes with model predictions underlines the potential of quantitative imaging workflows in pre-operative subtyping and risk assessment in PDAC.


2021 ◽  
pp. 105566562110610
Author(s):  
Alexandra Junn ◽  
Jacob Dinis ◽  
Sacha C. Hauc ◽  
Madeleine K. Bruce ◽  
Kitae E. Park ◽  
...  

Objective Several severity metrics have been developed for metopic craniosynostosis, including a recent machine learning-derived algorithm. This study assessed the diagnostic concordance between machine learning and previously published severity indices. Design Preoperative computed tomography (CT) scans of patients who underwent surgical correction of metopic craniosynostosis were quantitatively analyzed for severity. Each scan was manually measured to derive manual severity scores and also received a scaled metopic severity score (MSS) assigned by the machine learning algorithm. Regression analysis was used to correlate manually captured measurements to MSS. ROC analysis was performed for each severity metric and were compared to how accurately they distinguished cases of metopic synostosis from controls. Results In total, 194 CT scans were analyzed, 167 with metopic synostosis and 27 controls. The mean scaled MSS for the patients with metopic was 6.18 ± 2.53 compared to 0.60 ± 1.25 for controls. Multivariable regression analyses yielded an R-square of 0.66, with significant manual measurements of endocranial bifrontal angle (EBA) (P = 0.023), posterior angle of the anterior cranial fossa (p < 0.001), temporal depression angle (P = 0.042), age (P < 0.001), biparietal distance (P < 0.001), interdacryon distance (P = 0.033), and orbital width (P < 0.001). ROC analysis demonstrated a high diagnostic value of the MSS (AUC = 0.96, P < 0.001), which was comparable to other validated indices including the adjusted EBA (AUC = 0.98), EBA (AUC = 0.97), and biparietal/bitemporal ratio (AUC = 0.95). Conclusions The machine learning algorithm offers an objective assessment of morphologic severity that provides a reliable composite impression of severity. The generated score is comparable to other severity indices in ability to distinguish cases of metopic synostosis from controls.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anthime Flaus ◽  
Julie Amat ◽  
Nathalie Prevot ◽  
Louis Olagne ◽  
Lucie Descamps ◽  
...  

Introduction: The aim of this study was to find the best ordered combination of two FDG positive musculoskeletal sites with a machine learning algorithm to diagnose polymyalgia rheumatica (PMR) vs. other rheumatisms in a cohort of patients with inflammatory rheumatisms.Methods: This retrospective study included 140 patients who underwent [18F]FDG PET-CT and whose final diagnosis was inflammatory rheumatism. The cohort was randomized, stratified on the final diagnosis into a training and a validation cohort. FDG uptake of 17 musculoskeletal sites was evaluated visually and set positive if uptake was at least equal to that of the liver. A decision tree classifier was trained and validated to find the best combination of two positives sites to diagnose PMR. Diagnosis performances were measured first, for each musculoskeletal site, secondly for combination of two positive sites and thirdly using the decision tree created with machine learning.Results: 55 patients with PMR and 85 patients with other inflammatory rheumatisms were included. Musculoskeletal sites, used either individually or in combination of two, were highly imbalanced to diagnose PMR with a high specificity and a low sensitivity. The machine learning algorithm identified an optimal ordered combination of two sites to diagnose PMR. This required a positive interspinous bursa or, if negative, a positive trochanteric bursa. Following the decision tree, sensitivity and specificity to diagnose PMR were respectively 73.2 and 87.5% in the training cohort and 78.6 and 80.1% in the validation cohort.Conclusion: Ordered combination of two visually positive sites leads to PMR diagnosis with an accurate sensitivity and specificity vs. other rheumatisms in a large cohort of patients with inflammatory rheumatisms.


Author(s):  
Federico M. Asch ◽  
Victor Mor-Avi ◽  
David Rubenson ◽  
Steven Goldstein ◽  
Muhamed Saric ◽  
...  

Background: We have recently tested an automated machine-learning algorithm that quantifies left ventricular (LV) ejection fraction (EF) from guidelines-recommended apical views. However, in the point-of-care (POC) setting, apical 2-chamber views are often difficult to obtain, limiting the usefulness of this approach. Since most POC physicians often rely on visual assessment of apical 4-chamber and parasternal long-axis views, our algorithm was adapted to use either one of these 3 views or any combination. This study aimed to (1) test the accuracy of these automated estimates; (2) determine whether they could be used to accurately classify LV function. Methods: Reference EF was obtained using conventional biplane measurements by experienced echocardiographers. In protocol 1, we used echocardiographic images from 166 clinical examinations. Both automated and reference EF values were used to categorize LV function as hyperdynamic (EF>73%), normal (53%–73%), mildly-to-moderately (30%–52%), or severely reduced (<30%). Additionally, LV function was visually estimated for each view by 10 experienced physicians. Accuracy of the detection of reduced LV function (EF<53%) by the automated classification and physicians’ interpretation was assessed against the reference classification. In protocol 2, we tested the new machine-learning algorithm in the POC setting on images acquired by nurses using a portable imaging system. Results: Protocol 1: the agreement with the reference EF values was good (intraclass correlation, 0.86–0.95), with biases <2%. Machine-learning classification of LV function showed similar accuracy to that by physicians in most views, with only 10% to 15% cases where it was less accurate. Protocol 2: the agreement with the reference values was excellent (intraclass correlation=0.84) with a minimal bias of 2.5±6.4%. Conclusions: The new machine-learning algorithm allows accurate automated evaluation of LV function from echocardiographic views commonly used in the POC setting. This approach will enable more POC personnel to accurately assess LV function.


2020 ◽  
Author(s):  
Lydia Chougar ◽  
Johann Faouzi ◽  
Nadya Pyatigorskaya ◽  
Rahul Gaurav ◽  
Emma Biondetti ◽  
...  

ABSTRACTBackgroundSeveral studies have shown that machine learning algorithms using MRI data can accurately discriminate parkinsonian syndromes. Validation under clinical conditions is missing.ObjectivesTo evaluate the accuracy for the categorization of parkinsonian syndromes of a machine learning algorithm trained with a research cohort and tested on an independent clinical replication cohort.Methods361 subjects, including 94 healthy controls, 139 patients with PD, 60 with PSP with Richardson’s syndrome, 41 with MSA of the parkinsonian variant (MSA-P) and 27 with MSA of the cerebellar variant (MSA-P), were recruited. They were divided into a training cohort (n=179) scanned in a research environment, and a replication cohort (n=182), scanned in clinical conditions on different MRI systems. Volumes and DTI metrics in 13 brain regions were used as input for a supervised machine learning algorithm.ResultHigh accuracy was achieved using volumetry in the classification of PD versus PSP, PD versus MSA-P, PD versus MSA-C, PD versus atypical parkinsonian syndromes and PSP versus MSA-C in both cohorts, although slightly lower in the replication cohort (balanced accuracy: 0.800 to 0.915 in the training cohort; 0.741 to 0.928 in the replication cohort). Performance was lower in the classification of PSP versus MSA-P and MSA-P versus MSA-C. When adding DTI metrics, the performance tended to increase in the training cohort, but not in the replication cohort.ConclusionsA machine learning approach based on volumetric and DTI data can accurately classify subjects with early-stage parkinsonism, scanned on different MRI systems, in the setting of their clinical workup.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Sign in / Sign up

Export Citation Format

Share Document