Assessing the Effect of Countdown Featured TOR Signal on Drivers in Automated Driving Mode Change

Author(s):  
HyunJoo Park ◽  
HyunJae Park ◽  
Sang-Hwan Kim

In conditional automated driving, drivers may be required starting manual driving from automated driving mode after take-over request (TOR). The objective of the study was to investigate different TOR features for drivers to engage in manual driving effectively in terms of reaction time, preference, and situation awareness (SA). Five TOR features, including four features using countdown, were designed and evaluated, consisted of combinations of different modalities and codes. Results revealed the use of non-verbal sound cue (beep) yielded shorter reaction time while participants preferred verbal sound cue (speech). Drivers' SA was not different for TOR features, but the level of SA was affected by different aspects of SA. The results may provide insights into designing multimodal TOR along with drivers' behavior during take-over tasks.

Information ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 162
Author(s):  
Soyeon Kim ◽  
René van Egmond ◽  
Riender Happee

In automated driving, the user interface plays an essential role in guiding transitions between automated and manual driving. This literature review identified 25 studies that explicitly studied the effectiveness of user interfaces in automated driving. Our main selection criterion was how the user interface (UI) affected take-over performance in higher automation levels allowing drivers to take their eyes off the road (SAE3 and SAE4). We categorized user interface (UI) factors from an automated vehicle-related information perspective. Short take-over times are consistently associated with take-over requests (TORs) initiated by the auditory modality with high urgency levels. On the other hand, take-over requests directly displayed on non-driving-related task devices and augmented reality do not affect take-over time. Additional explanations of take-over situation, surrounding and vehicle information while driving, and take-over guiding information were found to improve situational awareness. Hence, we conclude that advanced user interfaces can enhance the safety and acceptance of automated driving. Most studies showed positive effects of advanced UI, but a number of studies showed no significant benefits, and a few studies showed negative effects of advanced UI, which may be associated with information overload. The occurrence of positive and negative results of similar UI concepts in different studies highlights the need for systematic UI testing across driving conditions and driver characteristics. Our findings propose future UI studies of automated vehicle focusing on trust calibration and enhancing situation awareness in various scenarios.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 42
Author(s):  
Lichao Yang ◽  
Mahdi Babayi Semiromi ◽  
Yang Xing ◽  
Chen Lv ◽  
James Brighton ◽  
...  

In conditionally automated driving, the engagement of non-driving activities (NDAs) can be regarded as the main factor that affects the driver’s take-over performance, the investigation of which is of great importance to the design of an intelligent human–machine interface for a safe and smooth control transition. This paper introduces a 3D convolutional neural network-based system to recognize six types of driver behaviour (four types of NDAs and two types of driving activities) through two video feeds based on head and hand movement. Based on the interaction of driver and object, the selected NDAs are divided into active mode and passive mode. The proposed recognition system achieves 85.87% accuracy for the classification of six activities. The impact of NDAs on the perspective of the driver’s situation awareness and take-over quality in terms of both activity type and interaction mode is further investigated. The results show that at a similar level of achieved maximum lateral error, the engagement of NDAs demands more time for drivers to accomplish the control transition, especially for the active mode NDAs engagement, which is more mentally demanding and reduces drivers’ sensitiveness to the driving situation change. Moreover, the haptic feedback torque from the steering wheel could help to reduce the time of the transition process, which can be regarded as a productive assistance system for the take-over process.


Author(s):  
Yuan-chun Huang ◽  
Lan-peng Li ◽  
Zhi-gang Liu ◽  
Hai-yan Zhu ◽  
Lin Zhu

This paper describes an experiment conducted to establish a workload model by employing physiological methods to measure driver workload and fatigue under real working conditions. Experienced healthy metro drivers were selected as subjects; they performed normal schedules during which simultaneous electrocardiogram (ECG) recording was used to assess their levels of fatigue. Then, subjective workload assessment and reaction time tests were conducted during each break interval to monitor the drivers’ physiological and psychological performance. Based on task analysis, driving workload models with time weight parameters of four types of tasks were established and the workload real-time changes during different shifts were evaluated. The results demonstrate that workload tends to increase over time and it is significantly higher during manual driving mode than autonomous mode ( p = 0.015 < 0.05). Driving fatigue occurs earlier in the night shift than in the day shift according to ECG spectrum analysis results. Although the results of reaction time tests show no significance ( p = 0.917 > 0.05), the increase in the number of reaction errors after fatigue driving indicates a reduction in drivers’ cognitive ability. Regression analysis shows a significant regression relationship with a mutual incentive effect between workload and fatigue in three shifts ( R2 > 0.4). These will be used as a future reference for fatigue research and to help develop reasonable schedules to ensure operational safety.


Author(s):  
Frederik Schewe ◽  
Hao Cheng ◽  
Alexander Hafner ◽  
Monika Sester ◽  
Mark Vollrath

We tested whether head-movements under automated driving can be used to classify a vehicle occupant as either situation-aware or unaware. While manually cornering, an active driver’s head tilt correlates with the road angle which serves as a visual reference, whereas an inactive passenger’s head follows the g-forces. Transferred to partial/conditional automation, the question arises whether aware occupant’s head-movements are comparable to drivers and if this can be used for classification. In a driving-simulator-study (n=43, within-subject design), four scenarios were used to generate or deteriorate situation awareness (manipulation checked). Recurrent neural networks were trained with the resulting head-movements. Inference statistics were used to extract the discriminating feature, ensuring explainability. A very accurate classification was achieved and the mean side rotation-rate was identified as the most differentiating factor. Aware occupants behave more like drivers. Therefore, head-movements can be used to classify situation awareness in experimental settings but also in real driving.


Author(s):  
Jin-Woo Lee ◽  
Bakhtiar B. Litkouhi

The lateral motion control is a key element for automated driving vehicle technology. Typically, the front steering system has been used as the primary actuator for vehicle lateral motion control. Alternatively, this paper presents a new method of the lateral motion control using a rear steer. When combined with the front steer actuator, the rear steer can generate more dynamically responsive turning of the vehicle. In addition, the rear steer can be used as a secondary back up actuator when the front steer actuator fails to operate during automated driving mode. Similar to the prior research that has used the front steer actuator for the lateral control, the control methodology presented in this paper maintains the same hierarchical framework, i.e., sensor fusion, path prediction, path planning, and motion control. Since the rear steer is in play for the vehicle lateral motion control, the equations for the path prediction and vehicle dynamics are re-derived with non-zero front steer and rear steer angles. Combined with the rear steering dynamics, the model predictive control (MPC) technique is applied for motion error minimization. This paper describes the theoretical part of the algorithm, and provides simulation results to show effectiveness of the algorithm. Future work will include vehicle implementation, testing, and evaluation.


Safety ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 34
Author(s):  
Shi Cao ◽  
Pinyan Tang ◽  
Xu Sun

A new concept in the interior design of autonomous vehicles is rotatable or swivelling seats that allow people sitting in the front row to rotate their seats and face backwards. In the current study, we used a take-over request task conducted in a fixed-based driving simulator to compare two conditions, driver front-facing and rear-facing. Thirty-six adult drivers participated in the experiment using a within-subject design with take-over time budget varied. Take-over reaction time, remaining action time, crash, situation awareness and trust in automation were measured. Repeated measures ANOVA and Generalized Linear Mixed Model were conducted to analyze the results. The results showed that the rear-facing configuration led to longer take-over reaction time (on average 1.56 s longer than front-facing, p < 0.001), but it caused drivers to intervene faster after they turned back their seat in comparison to the traditional front-facing configuration. Situation awareness in both front-facing and rear-facing autonomous driving conditions were significantly lower (p < 0.001) than the manual driving condition, but there was no significant difference between the two autonomous driving conditions (p = 1.000). There was no significant difference of automation trust between front-facing and rear-facing conditions (p = 0.166). The current study showed that in a fixed-based simulator representing a conditionally autonomous car, when using the rear-facing driver seat configuration (where participants rotated the seat by themselves), participants had longer take-over reaction time overall due to physical turning, but they intervened faster after they turned back their seat for take-over response in comparison to the traditional front-facing seat configuration. This behavioral change might be at the cost of reduced take-over response quality. Crash rate was not significantly different in the current laboratory study (overall the average rate of crash was 11%). A limitation of the current study is that the driving simulator does not support other measures of take-over request (TOR) quality such as minimal time to collision and maximum magnitude of acceleration. Based on the current study, future studies are needed to further examine the effect of rotatable seat configurations with more detailed analysis of both TOR speed and quality measures as well as in real world driving conditions for better understanding of their safety implications.


Sign in / Sign up

Export Citation Format

Share Document