State-of-the-Art Review : Role of Antithrombin and Tissue Factor Pathway Inhibitor in the Control of Thrombosis and Mediation of Heparin Action

1996 ◽  
Vol 2 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Nina Iverson ◽  
Ulrich Abildgaard

Deficiency of any of the two coagulation in hibitors antithrombin (AT) and tissue factor pathway in hibitor (TFPI) lowers the resistance to thrombosis. He reditary deficiency of AT leads to a high risk of throm bosis, which occasionally responds poorly to heparin therapy. Experimental deficiency of TFPI lowers the re sistance to infusion of both tissue factor and endotoxin, both regarding microvascular thrombosis and fatality. Administration of either AT or TFPI protects against mi cro- and macrovascular thrombosis. Injection of heparin and some other glycosaminoglycans releases intima bound TFPI to the blood. Heparin accelerates the inhib itory effects of both inhibitors, in particular the effect of AT. The influence of the two inhibitors on the various anticoagulant reactions have been studied using blocking antibodies. It is suggested that the anticoagulant and an tithrombotic effects of heparin are mainly mediated by the accelerated inactivation of thrombin, factor IXa and factor X by AT, and augmented inactivation of tissue factor-factor VIIa by TFPI released to the blood.

2013 ◽  
Vol 289 (3) ◽  
pp. 1732-1741 ◽  
Author(s):  
Michael Dockal ◽  
Rudolf Hartmann ◽  
Markus Fries ◽  
M. Christella L. G. D. Thomassen ◽  
Alexandra Heinzmann ◽  
...  

Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that inhibits activated factor X (FXa) via a slow-tight binding mechanism and tissue factor-activated FVII (TF-FVIIa) via formation of a quaternary FXa-TFPI-TF-FVIIa complex. Inhibition of TFPI enhances coagulation in hemophilia models. Using a library approach, we selected and subsequently optimized peptides that bind TFPI and block its anticoagulant activity. One peptide (termed compound 3), bound with high affinity to the Kunitz-1 (K1) domain of TFPI (Kd ∼1 nm). We solved the crystal structure of this peptide in complex with the K1 of TFPI at 2.55-Å resolution. The structure of compound 3 can be segmented into a N-terminal anchor; an Ω-shaped loop; an intermediate segment; a tight glycine-loop; and a C-terminal α-helix that is anchored to K1 at its reactive center loop and two-stranded β-sheet. The contact surface has an overall hydrophobic character with some charged hot spots. In a model system, compound 3 blocked FXa inhibition by TFPI (EC50 = 11 nm) and inhibition of TF-FVIIa-catalyzed FX activation by TFPI (EC50 = 2 nm). The peptide prevented transition from the loose to the tight FXa-TFPI complex, but did not affect formation of the loose FXa-TFPI complex. The K1 domain of TFPI binds and inhibits FVIIa and the K2 domain similarly inhibits FXa. Because compound 3 binds to K1, our data show that K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. This mode of action translates into normalization of coagulation of hemophilia plasmas. Compound 3 thus bears potential to prevent bleeding in hemophilia patients.


1997 ◽  
Vol 78 (03) ◽  
pp. 1138-1141 ◽  
Author(s):  
Yuichiro Sato ◽  
Yujiro Asada ◽  
Kousuke Marutsuka ◽  
Kinta Hatakeyama ◽  
Yuichi Kamikubo ◽  
...  

SummaryTissue factor (TF), a transmembrane glycoprotein, forms a high affinity complex with factor Vll/VIIa (FVIIa) and thereby initiates blood coagulation. Tissue factor pathway inhibitor (TFPI) is an endogenous protease inhibitor of TF/FVIIa-initiated coagulation. We previously reported that TF was a strong chemotactic factor for cultured vascular smooth muscle cells (SMCs). In this study, we examined the contribution of FVIIa and the effect of TFPI to TF-induced cultured SMC migration. TF/FVIIa complex showed a strong migration ability, however, neither TF alone nor FVIIa induced SMC migration. TF/FVIIa treated by a serine protease inhibitor and the complex of TF and inactivated FVIIa (DEGR-FVIIa) did not stimulate SMC migration. Pretreatment with hirudin and the antibodies to a-thrombin and factor X had no effect on TF/FVIIa-induced SMC migration, although a-thrombin and factor Xa also induced SMC migration respectively. TFPI markedly inhibited TF/FVIIa-induced SMC migration in a concentration-dependent manner, but did not affect the SMC migration induced by platelet-derived growth factor (PDGF)-BB, basic fibro blast-growth factor (bFGF), or a-thrombin. These results indicate that the catalytic activity of TF/FVIIa complex is important on SMC migration, and TFPI can reduce SMC migration as well as thrombosis.


2004 ◽  
Vol 91 (05) ◽  
pp. 886-898 ◽  
Author(s):  
Thomas Mather ◽  
José Ribeiro ◽  
Ivo Francischetti

SummaryTick saliva is a rich source of molecules with antiinflammatory, antihemostatic and immunosupressive properties. In this paper, a novel tick salivary gland cDNA with sequence homology to tissue factor pathway inhibitor (TFPI) and coding for a protein called Penthalaris has been characterized from the Lyme disease vector, Ixodes scapularis. Penthalaris is structurally unique and distinct from TFPI or TFPI-like molecules described so far, including Ixolaris, NAPc2, TFPI-1 and TFPI-2. Penthalaris is a 308-amino-acid protein (35 kDa, pI 8.58) with 12 cysteine bridges and 5 tandem Kunitz domains. Recombinant Penthalaris was expressed in insect cells and shown to inhibit factor VIIa (FVIIa)/tissue factor(TF)-induced factor X (FX) activation with an IC50 of ∼ 100 pM. Penthalaris tightly binds both zymogen FX and enzyme FXa (exosite), but not FVIIa, as demonstrated by column gel-filtration chromatography. At high concentrations, Penthalaris attenuates FVIIa/TF-induced chromogenic substrate (S2288) hydrolysis and FIX activation. In the presence of DEGR-FX or DEGR-FXa, but not des-Gla-DEGR-FXa as scaffolds, tight and stoichiometric inhibition of FVIIa/TF was achieved. In addition, Penthalaris blocks cell surface-mediated FXa generation by monomer (de-encrypted), but not dimer (encrypted) TF in HL-60 cells. Penthalaris may act in concert with Ixolaris and other salivary anti-hemostatics in order to help ticks to successfully feed on blood. Penthalaris is a novel anticoagulant and a tool to study FVIIa/TF-initiated biologic processes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1948-1948
Author(s):  
Stephanie A. Smith ◽  
Barry Woodhams ◽  
Cees Kluft ◽  
Piet Meijer ◽  
Agneta Siegbahm ◽  
...  

Abstract Heparin therapy decreases plasma factor VIIa (FVIIa) levels as measured by the soluble tissue factor (sTF)-based clotting assay, but it is unclear whether the measured decrease is a real in vivo effect, an in vitro artifact, or both. Because plasma samples are diluted tenfold and mixed 1:1 with FVII-deficient plasma, patient tissue factor pathway inhibitor (TFPI) usually contributes only a small portion of the TFPI in the assay. So, mild in vivo variation of TFPI has negligible effect on measuring FVIIa. However, marked in vivo elevations of TFPI during heparin therapy might interfere with the assay, thus artifactually decreasing measured FVIIa levels. Methods: Plasma FVIIa was measured using the STAclot VIIa-rTF kit. In some tests, a blocking anti-TFPI monoclonal antibody (T4E2) was added to the sTF reagent (0 or 50 μg/ml IgG). Equal volumes of sample (test plasma or assay standard), FVII-deficient plasma, and sTF reagent were mixed and incubated at 37°C for 1 h, after which clotting was initiated by adding CaCl2. Free TFPI levels were measured with Asserachrom Free TFPI (Diagnostica Stago). Results: Anti-TFPI IgG shortened the clotting times of the assay standards and normal pooled plasma (free TFPI concentration, 7.3 ng/ml), but resulted in no net change in measured FVIIa. Adding TFPI to pooled plasma interfered with FVIIa measurement only when free TFPI exceeded 70 ng/ml. FVIIa levels in plasma samples from ten normal individuals (28–141 mU/ml FVIIa) were measured with and without anti-TFPI IgG and again there was no significant change in measured FVIIa levels. Adding 100 ng/ml TFPI to these samples decreased their apparent FVIIa levels by 13–44% when measured in the absence of blocking anti-TFPI IgG, but this was completely abrogated by anti-TFPI IgG. Pre-heparin and post-heparin samples from normal individuals (see Figure) treated with either Dalteparin (D, n=6, triangles) or unfractionated heparin (U, n=2, circles) were then evaluated. [A= pre-heparin; B= post-heparin.] In each case, free-TFPI increased and FVIIa (measured -Ab) decreased after heparin administration. FVIIa levels measured without TFPI interference (+Ab) also decreased, although less profoundly. Conclusions: Only very high levels (>70 ng/ml) of free TFPI interfere with the FVIIa assay. To properly assess TFPI interference, it is essential that blocking anti-TF IgG be added to both the samples and the assay calibrators from which the standard curve is prepared. TFPI levels > 70 ng/ml are generally not found in normal individuals or in the majority of disease conditions, but can exist in patients receiving heparin. Removing the influence of TFPI on the FVIIa assay (using a blocking antibody) only partially accounts for the decrease in measured FVIIa levels in response to heparin. A portion of this decrease in FVIIa levels may therefore be attributed to the ability of heparin to directly accelerate the inactivation of factor VIIa by plasma protease inhibitors, including antithrombin. Figure Figure


2001 ◽  
Vol 85 (03) ◽  
pp. 458-463 ◽  
Author(s):  
Alexei Iakhiaev ◽  
Wolfram Ruf ◽  
Vijaya Mohan Rao

SummaryThe extrinsic coagulation pathway is initiated by the binding of plasma factor VIIa (VIIa) to the cell surface receptor tissue factor (TF). Formation of the TF-VIIa complex results in allosteric activation of VIIa as well as the creation of an extended macromolecular substrate binding exosite that greatly enhances proteolytic activation of substrate factor X. The catalytic function of the TF-VIIa complex is regulated by a specific Kunitz-type inhibitor, tissue factor pathway inhibitor (TFPI). TFPI inhibition of the TF-VIIa complex was enhanced by the presence of Xa. This study investigates the relative contribution of catalytic cleft and exosite residues in VIIa for inhibitory complex formation with TFPI. VIIa protease domain residues Q176, T239 and E296 are involved in the formation of stable inhibitor complex with free TFPI. Kinetic analysis further demonstrated a predominant role of the S2’ subsite residue Q176 for the initial complex formation with TFPI. In contrast, no significant reductions in inhibition by TFPI-Xa were found for each of the mutants in complex with phospholipid reconstituted TF. However, reduced rates of inhibition of the VIIa Gla-domain (R36) and Q176 mutant by TFPI-Xa were evident when TF was solubilized by detergent micelles. These data demonstrate docking of the TFPI-Xa complex with the macromolecular substrate exosite and the catalytic cleft, in particular the S2’ subsite. The masking of the mutational effect by the presence of phospholipid shows a critical importance of Xa Gla-domain interactions in stabilizing the quaternary TF-VIIa-Xa-TFPI complex.


1999 ◽  
Vol 274 (40) ◽  
pp. 28225-28232 ◽  
Author(s):  
Irene Salemink ◽  
Jo Franssen ◽  
George M. Willems ◽  
H. Coenraad Hemker ◽  
Theo Lindhout

1998 ◽  
Vol 80 (08) ◽  
pp. 273-280 ◽  
Author(s):  
Irene Salemink ◽  
Jo Franssen ◽  
George Willems ◽  
Coenraad Hemker ◽  
Anguo Li ◽  
...  

SummaryTissue factor : factor VIIa induced activation of blood coagulation is inhibited by the complex between factor Xa and tissue factor pathway inhibitor (factor Xa : TFPI). We recently reported that phospholipid-bound factor Xa reduces the high binding affinity of factor Xa : TFPI for negatively charged phospholipids by a partial degradation of TFPI (17). The present study was undertaken to elucidate the factor Xa cleavage sites in TFPI and to delineate the consequences of this proteolysis with respect to the inhibitory activity of factor Xa : TFPI. We found that phospholipid-bound factor Xa cleaves in TFPI the peptide bonds between Lys86-Thr87 and Arg199-Ala200. Interestingly, Arg199 is the P1 residue of the third Kunitz-type protease inhibitor domain. The fast cleavage of the Arg199-Ala200 bond results in a 50-70% reduction of the anticoagulant activity of factor Xa : TFPI, as determined with a dilute tissue factor assay, but is not associated with a diminished inhibitory activity of factor Xa : TFPI towards TF : factor VIIa catalyzed activation of factor X. On the other hand, the slower cleavage of the Lys86-Thr87 peptide bond was associated with both a diminished anticoagulant and anti-TF : factor VIIa activity. Dissociation of factor Xa from the cleaved TFPI was not observed. These data provide evidence for a dual role of factor Xa since it is the essential cofactor in the TFPI-controlled regulation of TF-dependent coagulation as well as a catalyst of the inactivation of TFPI.


1995 ◽  
Vol 74 (03) ◽  
pp. 910-915 ◽  
Author(s):  
Theo Lindhout ◽  
Jo Franssen ◽  
George Willems

SummaryTissue factor-factor VIIa catalysed activation of factor X and factor IX is inhibited by the complex of tissue factor pathway inhibitor (TFPI) and factor Xa. At present, no information is available as to what extent the kinetics of complex formation between TFPI and factor Xa during factor X activation contribute to the overall rate of inactivation of the factor X converting complex. We have determined the kinetic parameters of the individual reactions, i. e. factor X activation, formation of the TFPI-factor Xa complex, and inactivation of tissue factor-factor VIIa by the TFPI-factor Xa complex. We modelled the overall reaction by assuming a two-step reaction: factor Xa generated by tissue factor-factor VIIa forms a reversible complex with TFPI and in the second step this complex forms a reversible quaternary complex with tissue factor- factor VIIa. The validity of the model was demonstrated by analysis of factor Xa generation curves in the presence of TFPI. Independently determined constants for factor X activation (kcat= 12 s-1, Km = 70 nM) and inhibition of tissue factor-factor VIIa by TFPI-factor Xa complex (rate constant of inhibition of 1.1 × 108 M-1s-1) were used. The association rate constant of the formation of the TFPI-factor Xa complex was estimated by fitting the model to the data. The rate constants of association of the complex between factor Xa and the variants full length TFPI, TFPI 1-247 and TFPI1-61 were very close to the values determined independently in a kinetic study on the inhibition of factor Xa in the presence of phospholipids, namely 3.4 × 106 M-1s-1, 0.4 × 106 M-1s-1 and 0.3 × 106 M-1s-1, respectively. These results indicate that the factor Xa-dependent inhibition of tissue factor-factor VIIa-catalysed factor X activation by TFPI can be adequately described by the two-step reaction sequence. We found that phospholipids (25 mol % phosphat-idylserine/75 mol % phospatidylcholine) increased the rate constant of association with factor Xa for full length TFPI, but not for the C-ter- minus truncated TFPI. Our results further indicate that optimal inhibition of tissue factor-factor VIIa activity is obtained with full length TFPI because of the higher rate of TFPI-factor Xa complex formation.


1995 ◽  
Vol 74 (06) ◽  
pp. 1478-1485 ◽  
Author(s):  
Sanne Valentin ◽  
Chris P M Reutlingsperger ◽  
Ole Nordfang ◽  
Theo Lindhout

SummaryTissue factor pathway inhibitor (TFPI) is a naturally occurring factor Xa-dependent inhibitor of factor VIIa/tissue factor activity. In the present study, we examined the importance of the TFPI C-terminus and 3rd Kunitz-like domain for the inhibitory capacity of TFPI towards factor VIIa/tissue factor-catalyzed factor X activation and compared the inhibition with that of inactivated factor VIIa (factor VIIai). The extracellular matrix of fibroblasts, mounted in a parallel-plate flow chamber, were perfused with reaction mixtures that contained factors X, VIIa, and varying amounts of TFPI or factor VIIai. Inhibition was evaluated from the time course of factor Xa production at the outlet of the flow chamber. The factor VIIa/tissue factor-catalyzed factor Xa production was inhibited by factor VIIai and compatible with a direct competition between factor VIIai and factor VIIa for tissue factor. In contrast, TFPI showed a progressive inhibition of factor Xa production; the initial rate of factor X activation, however, was not inhibited by TFPI. Inhibition of factor Xa generation already in progress was seen for TFPI but not factor VIIai. In both cases we found that the truncated TFPI variants were as potent as full length TFPI. As to the stability of the enzyme- inhibitor complexes, TFPI/Xa/VIIa/tissue factor and factor VIIai/tissue factor, marked differences were observed. About 60% of the factor VIIa/tissue factor activity was recovered from the truncated TFPI/Xa/VIIa/tissue factor complex after 150 min of perfusion with reaction mixtures that contained factors X and VIIa. In contrast, full length TFPI did not dissociate from the complex, nor could factor VIIai be displaced by a large excess of factor VIIa.


Sign in / Sign up

Export Citation Format

Share Document