High-bandwidth controller design for dual-stage actuator system in hard disk drives

2022 ◽  
pp. 107754632110623
Author(s):  
Shota Yabui ◽  
Takenori Atsumi

Large-capacity hard disk drives are important for the development of an information society. The capacities of hard disk drives depend on the positioning accuracy of magnetic heads, which read and write digital data, in disk-positioning control systems. Therefore, it is necessary to improve positioning accuracy to develop hard disk drives with large capacities. Hard disk drives employ dual-stage actuator systems to accurately control the magnetic heads. A dual-stage actuator system consists of a voice coil motor and micro-actuator. In micro-actuators, there is a trade-off between head-positioning accuracy and stroke limitation. In particular, in a conventional controller design, the micro-actuator is required to actuate such that it compensates for low-frequency vibration. To overcome this trade-off, this study proposes a high-bandwidth controller design for the micro-actuator in a dual-stage actuator system. The proposed method can reduce the required stroke of the micro-actuator by increasing the gain of the feedback controller of the voice coil motor at low frequencies. Although the voice coil motor control loop becomes unstable, the micro-actuator stabilizes the entire feedback loop at high frequencies. As a result, the control system improves the positioning accuracy compared to that achieved by conventional control methods, and the required micro-actuator stroke is reduced.

Author(s):  
Craig E. Stensland ◽  
Mark Bedillion

Modern hard disk drives (HDDs) use single-input, dual-output (SIDO) controllers to control a dual-stage plant consisting of a large-stroke voice coil motor (VCM) and a short-stroke, high-bandwidth piezoelectric microactuator (PZT). Various methods have been proposed to perform the SIDO controller design; among the most commonly used approaches is μ-synthesis. While μ-synthesis generates stable controllers for the overall system, it does not guarantee stability of the VCM-only loop in the presence of microactuator saturation or failure. One approach to the DISO design that maintains VCM-only stability is the sequential design of VCM and PZT controllers. This paper presents a systematic study of sequential vs. parallel design. Designs are evaluated by comparing values of μ obtained for equivalent designs between the sequential and parallel approaches. The circle criterion is used to test stability of the system under saturation. Performance of sequential and parallel designs in shock events are tested in simulation.


Author(s):  
Zhi Chen ◽  
Prateek Shah ◽  
Roberto Horowitz

Abstract The recent rapid growth in the cloud storage industry has strongly increased the demand for high-capacity hard disk drives (HDDs). Increasing the areal density brings new challenges to the high-accuracy head-positioning control in the next generation HDD development. Triple-stage-actuator (TSA) system is one of the emerging technologies that can achieve higher bandwidth than that of a dual-stage-actuator (DSA) system and improve the track-following performance. In this paper, we focus on the track-following controller design for TSA system with one voice coil motor (VCM) and two piezoelectric (PZT) actuators. Two types of mixed H2/Hinf synthesis methodologies based on model-based optimization and data-driven optimization are proposed to design the track-following controller for the TSA system. The TSA system can increase the bandwidth of the servo system and decrease the sensitivity to disturbances at the low-frequency range. While increasing the stroke limitation and the resonance frequency of the micro-actuator, the 3sigma the position error signals (PES) is reduced. The data-driven controller can achieve comparable head-positioning accuracy to the model-based controller when it converges to a local optimal solution. The simulation results show the feasibility and effectiveness of the TSA systems with a tertiary PZT actuator. We also analyze the effects of stroke limitations and resonance frequencies of the second/third-stage PZT actuators on the head-positioning accuracy. The results might provide a guideline for the TSA mechanical design.


Sign in / Sign up

Export Citation Format

Share Document