scholarly journals A note on traction continuity across an interface in a geometrically non-linear framework

2018 ◽  
Vol 24 (8) ◽  
pp. 2478-2496 ◽  
Author(s):  
Ali Javili

The objective of this contribution is to elaborate on the notion of “traction continuity” across an interface at finite deformations. The term interface corresponds to a zero-thickness model representing the interphase between different constituents in a material. Commonly accepted interface models are the cohesive interface model and the elastic interface model. Both the cohesive and elastic interface models are the limit cases of a generalized interface model. This contribution aims to rigorously analyze the concept of the traction jump for the general interface model. The governing equations of the general interface model in the material as well as spatial configurations are derived and the traction jump across the interface for each configuration is highlighted. It is clearly shown that the elastic interface model undergoes a traction jump in both the material and spatial configurations according to a generalized Young–Laplace equation. For the cohesive interface model, however, while the traction field remains continuous in the material configuration, it can suffer a jump in the spatial configuration. This finding is particularly important since the cohesive interface model is based on the assumption of traction continuity across the interface and that the term “traction” often refers to the spatial configuration and not the material one. Thus, additional care should be taken when formulating an interface model in a geometrically non-linear framework. The theoretical findings for various interface models are carefully illustrated via a series of two-dimensional and three-dimensional numerical examples using the finite element method.

2018 ◽  
Vol 107 ◽  
pp. 633-646 ◽  
Author(s):  
Chongcong Tao ◽  
Supratik Mukhopadhyay ◽  
Bing Zhang ◽  
Luiz F. Kawashita ◽  
Jinhao Qiu ◽  
...  

2017 ◽  
Vol 23 (9) ◽  
pp. 1303-1322 ◽  
Author(s):  
Ali Javili

The objective of this contribution is to formulate generalized interfaces in a variationally consistent manner within a finite deformation continuum mechanics setting. The general interface model is a zero-thickness model that represents the finite thickness “interphase” between different constituents in a heterogeneous material. The interphase may be the transition zone between inclusion and matrix in composites or the grain boundaries in polycrystalline solids. The term “general” indicates that the interface model here accounts for both jumps of the deformation as well as the traction across the interface. Both the cohesive zone model and elastic interface model can be understood as two limits of the current interface model. Furthermore, some aspects of material modeling of generalized interfaces are elaborated and a consistent model is proposed. Finally, the proposed theory is elucidated via a series of numerical examples.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Konrad Dadej ◽  
Jarosław Bieniaś ◽  
Paolo Sebastiano Valvo

An experimental campaign on glass-fiber/aluminum laminated specimens was conducted to assess the interlaminar fracture toughness of the metal/composite interface. Asymmetric end-notched flexure tests were conducted on specimens with different fiber orientation angles. The tests were also modeled by using two different analytical solutions: a rigid interface model and an elastic interface model. Experimental results and theoretical predictions for the specimen compliance and energy release rate are compared and discussed.


2021 ◽  
pp. 004051752199276
Author(s):  
Ki Wai Fong ◽  
Si Qing Li ◽  
Rong Liu

Inlay yarn and laid-in structures are important technical knitting elements that have been increasingly applied in the structural design of functional textiles in industrial, medical, and wearable electronics fields. However, there is no currently established geometric model to numerically analyze their spatial morphologies and structural properties. This study presents a new geometric model and numerical analysis approach to characterize spatial configurations of inlay yarn and ground yarn in a three-dimensional scenario for laid-in weft-knitted fabrics. Loop lengths of the inlay and ground yarn materials were calculated and analyzed under different contact and deformation conditions to estimate material consumption in this complex interlooping layout. Series of laid-in weft-knitted fabrics made of different combinations of ground and inlay yarns were fabricated with the 1 × 1 laid-in loop pattern and tested for the model validation. The comparisons between the experimental and calculated results indicated that the newly developed geometric model favorably agreed with the experimental measurements regarding the ground loop lengths and inlay loop lengths applied in the laid-in weft-knitted structures. The results indicated the applicability of the developed geometric model of laid-in weft-knitted fabrics with similar structural patterns in practical use. The output of this study provides a theoretical and practical reference for structural and physical properties analysis, material consumption prediction, even cost estimation of laid-in weft-knitted fabrics.


Sign in / Sign up

Export Citation Format

Share Document