On the contact problem of a moving rigid cylindrical punch sliding over an orthotropic layer bonded to an isotropic half plane

2020 ◽  
Vol 25 (10) ◽  
pp. 1924-1942
Author(s):  
I Çömez ◽  
MA Güler

In this study, the frictional moving contact problem for an orthotropic layer bonded to an isotropic half plane under the action of a sliding rigid cylindrical punch is considered. Boundary conditions of the problem include the normal and tangential forces applied to the layer with a cylindrical punch moving on the surface of the layer in the lateral direction at a constant velocity V. It is assumed that the contact area is subjected to the sliding condition where Coulomb’⣙s law is used to relate the tangential traction to the normal traction. Using the Fourier integral transform technique and Galilean transformation, the plane contact problem is reduced to a singular integral equation in which the unknowns are the contact stress and the contact width. The singular integral equation is solved numerically using Gauss–Jacobi integration formulae. Numerical results for the contact widths and the contact stresses are given as a solution.

2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Yue Ting Zhou ◽  
Kang Yong Lee

The aim of the present paper is to investigate the two-dimensional moving contact behavior of piezomagnetic materials under the action of a sliding rigid punch. Introduction of the Galilean transformation makes the constitutive equations containing the inertial terms tractable. Eigenvalues analyses of the piezomagnetic governing equations are detailed, which are more complex than those of the commercially available piezoelectric materials. Four eigenvalue distribution cases occur in the practical computation. For each case, real fundamental solutions are derived. The original mixed boundary value problem with either a flat or a cylindrical punch foundation is reduced to a singular integral equation. Exact solution to the singular integral equation is obtained. Especially, explicit form of the stresses and magnetic inductions are given. Figures are plotted both to show the correctness of the derivation of the exact solution and to reveal the effects of various parameters on the stress and magnetic induction.


2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


2017 ◽  
Vol 24 (2) ◽  
pp. 448-464 ◽  
Author(s):  
Jie Yan ◽  
Changwen Mi ◽  
Zhixin Liu

In this work, we examine the receding contact between a homogeneous elastic layer and a half-plane substrate reinforced by a functionally graded coating. The material properties of the coating are allowed to vary exponentially along its thickness. A distributed traction load applied over a finite segment of the layer surface presses the layer and the coated substrate against each other. It is further assumed that the receding contact between the layer and the coated substrate is frictionless. In the absence of body forces, Fourier integral transforms are used to convert the governing equations and boundary conditions of the plane receding contact problem into a singular integral equation with the contact pressure and contact size as unknowns. Gauss–Chebyshev quadrature is subsequently employed to discretize both the singular integral equation and the force equilibrium condition at the contact interface. An iterative algorithm based on the method of steepest descent has been proposed to numerically solve the system of algebraic equations, which is linear for the contact pressure but nonlinear for the contact size. Extensive case studies are performed with respect to the coating inhomogeneity parameter, geometric parameters, material properties, and the extent of the indentation load. As a result of the indentation, the elastic layer remains in contact with the coated substrate over only a finite interval. Exterior to this region, the layer and the coated substrate lose contact. Nonetheless, the receding contact size is always larger than that of the indentation traction. To validate the theoretical solution, we have also developed a finite-element model to solve the same receding contact problem. Numerical results of finite-element modeling and theoretical development are compared in detail for a number of parametric studies and are found to agree very well with each other.


1973 ◽  
Vol 40 (4) ◽  
pp. 948-954 ◽  
Author(s):  
G. D. Gupta

A semi-infinite strip held rigidly on its short end is considered. Loads in the strip at infinity (far away from the fixed end) are prescribed. Integral transform technique is used to provide an exact formulation of the problem in terms of a singular integral equation. Stress singularity at the strip corner is obtained from the singular integral equation which is then solved numerically. Stresses along the rigid end are determined and the effect of the material properties on the stress-intensity factor is presented. The method can also be applied to the problem of a laminate composite with a flat inclusion normal to the interfaces.


Author(s):  
Onur Arslan

This study proposes analytical and computational methods for the solution of the sliding frictional contact problem of an anisotropic laterally graded layer loaded by an arbitrarily shaped rigid stamp. The plane-strain orthotropy prevails in the layer which is bonded to a rigid foundation. Each of four orthotropic stiffness coefficients is exponentially varied through the lateral direction of the elastic layer. The Fourier transformations of the field variables are employed in the formulation. The gradient of a displacement component on the surface is then converted to a singular integral equation of the second kind. The singular integral equation is solved by means of the Gauss–Jacobi quadrature integration techniques, a collocation method, and a recursive integration method for the Cauchy integral considering the flat and triangular stamp profiles. The finite element method solutions of the same contact problems are performed using the augmented Lagrange method which is implemented in virtue of ANSYS design parametric language. An iterative algorithm is additionally utilized for the (incomplete) triangular stamp problem to conveniently reach the solutions for predetermined contact lengths. The convergence and comparative analyses are carried out to elucidate the trustworthiness of the analytical and computational methods proposed. Moreover, the parametric analyses infer that the contact-induced damage risks can be effectively alleviated upon tuning the degree of orthotropy and the lateral heterogeneity of the elastic layer.


Sign in / Sign up

Export Citation Format

Share Document