scholarly journals High-Throughput Fluorescence Polarization Assay for Chemical Library Screening against Anti-Apoptotic Bcl-2 Family Member Bfl-1

2011 ◽  
Vol 17 (3) ◽  
pp. 350-360 ◽  
Author(s):  
Dayong Zhai ◽  
Paulo Godoi ◽  
Eduard Sergienko ◽  
Russell Dahl ◽  
Xochella Chan ◽  
...  

Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.

2011 ◽  
Vol 17 (2) ◽  
pp. 163-176 ◽  
Author(s):  
Charitha Madiraju ◽  
Kate Welsh ◽  
Michael P. Cuddy ◽  
Paulo H. Godoi ◽  
Ian Pass ◽  
...  

UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63–linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)–conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)–conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z′ scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.


2002 ◽  
Vol 7 (4) ◽  
pp. 367-371 ◽  
Author(s):  
Horst Flotow ◽  
Chung-Yan Leong ◽  
Antony D. Buss

Despite decades of research, malaria remains the world's most deadly parasitic disease. New treatments with novel mechanisms of action are urgently needed. Plasmepsin II is an aspartyl protease that has been validated as an antimalarial therapeutic target enzyme. Although natural products form the basis of most modern antimalarial drugs, no systematic high-throughput screening has been reported against this target. We have designed an effective strategy for carrying out high-throughput screening of an extensive library of natural products that uses a fluorescence resonance energy transfer primary screening assay in tandem with a fluorescence polarization assay. This strategy allows rapid screening of the library coupled with effective discrimination and elimination of false-positive samples and selection of true hits for chemical isolation of inhibitors of plasmepsin II.


2018 ◽  
Vol 23 (9) ◽  
pp. 974-981
Author(s):  
Yu-Chi Juang ◽  
Xavier Fradera ◽  
Yongxin Han ◽  
Anthony William Partridge

Histidine decarboxylase (HDC) is the primary enzyme that catalyzes the conversion of histidine to histamine. HDC contributes to many physiological responses as histamine plays important roles in allergic reaction, neurological response, gastric acid secretion, and cell proliferation and differentiation. Small-molecule modulation of HDC represents a potential therapeutic strategy for a range of histamine-associated diseases, including inflammatory disease, neurological disorders, gastric ulcers, and select cancers. High-throughput screening (HTS) methods for measuring HDC activity are currently limited. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring HDC activity. The assay is based on competition between HDC-generated histamine and fluorophore-labeled histamine for binding to a Europium cryptate (EuK)-labeled anti-histamine antibody. We demonstrated that the assay is highly sensitive and simple to develop. Assay validation experiments were performed using low-volume 384-well plates and resulted in good statistical parameters. A pilot HTS screen gave a Z′ score > 0.5 and a hit rate of 1.1%, and led to the identification of a validated hit series. Overall, the presented assay should facilitate the discovery of therapeutic HDC inhibitors by acting as a novel tool suitable for large-scale HTS and subsequent interrogation of compound structure–activity relationships.


2006 ◽  
Vol 11 (6) ◽  
pp. 606-616 ◽  
Author(s):  
Oliver Von Ahsen ◽  
Anne Schmidt ◽  
Monika Klotz ◽  
Karsten Parczyk

High-throughput screening (HTS) of large chemical libraries has become the main source of new lead compounds for drug development. Several specialized detection technologies have been developed to facilitate the cost- and time-efficient screening of millions of compounds. However, concerns have been raised, claiming that different HTS technologies may produce different hits, thus limiting trust in the reliability of HTS data. This study was aimed to investigate the reliability of the authors most frequently used assay techniques: scintillation proximity assay (SPA) and homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET). To investigate the data concordance between these 2 detection technologies, the authors screened a large subset of the Schering compound library consisting of 300,000 compounds for inhibitors of a nonreceptor tyrosine kinase. They chose to set up this study in realistic HTS scale to ensure statistical significance of the results. The findings clearly demonstrate that the choice of detection technology has no significant impact on hit finding, provided that assays are biochemically equivalent. Data concordance is up to 90%. The little differences in hit findings are caused by threshold setting but not by systematic differences between the technologies. The most significant difference between the compared techniques is that in the SPA format, more false-positive primary hits were obtained.


2010 ◽  
Vol 15 (10) ◽  
pp. 1281-1286 ◽  
Author(s):  
Imanol Peña ◽  
Juan Manuel Domínguez

The use of thermally denatured bovine serum albumin (tdBSA) as an additive in high-throughput screening (HTS) buffers has been studied with the aim of finding a surrogate to native albumin devoid of its inconveniences, in particular its compound masking effect. The presence of aggregates in the thermally denatured material did not have any negative impact on common readout technologies used in HTS such as fluorescence intensity (FLINT), fluorescence polarization, time-resolved fluorescence resonance energy transfer (TR-FRET) and luminescence. tdBSA rendered the same beneficial effects as native albumin in several assays or even improved its performance due to the lack of specific binding properties. Although tdBSA still binds compounds nonspecifically as any other protein does, it mitigates the compound masking effect observed with native albumin and can be postulated as a convenient surrogate to BSA for HTS purposes.


2016 ◽  
Vol 22 (4) ◽  
pp. 338-347 ◽  
Author(s):  
Danqing Xu ◽  
Zhiheng Xu ◽  
Li Han ◽  
Cheng Liu ◽  
Zheng Zhou ◽  
...  

Autophagy is an evolutionarily conserved homeostasis process through which aggregated proteins or damaged organelles are enveloped in a double-membrane structure called an autophagosome and then digested in a lysosome-dependent manner. Growing evidence suggests that malfunction of autophagy contributes to the pathogenesis of a variety of diseases, including cancer, viral infection, and neurodegeneration. However, autophagy is a complicated process, and understanding of the relevance of autophagy to disease is limited by lack of specific and potent autophagy modulators. ATG4B, a Cys-protease that cleaves ATG8 family proteins, such as LC3B, is a key protein in autophagosome formation and maturation process. A novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay measuring protease activity of ATG4B was developed, validated, and adapted into a high-throughput screening (HTS) format. HTS was then conducted with a Roche focus library of 57,000 compounds. After hit confirmation and a counterscreen to filter out fluorescence interference compounds, 267 hits were confirmed, constituting a hit rate of 0.49%. Furthermore, among 65 hits with an IC50 < 50 µM, one compound mimics the LC3 peptide substrate (-TFG-). Chemistry modification based on this particular hit gave preliminary structure activity relationship (SAR) resulting in a compound with a 10-fold increase in potency. This compound forms a stable covalent bond with Cys74 of ATG4B in a 1:1 ratio as demonstrated by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Furthermore, this compound displayed cellular ATG4B inhibition activity. Overall, the novel TR-FRET ATG4B protease assay plus counterscreen assay provides a robust platform to identify ATG4B inhibitors, which would help to elucidate the mechanism of the autophagy pathway and offer opportunities for drug discovery.


2019 ◽  
Vol 24 (6) ◽  
pp. 693-700 ◽  
Author(s):  
Justin M. Rectenwald ◽  
P. Brian Hardy ◽  
Jacqueline L. Norris-Drouin ◽  
Stephanie H. Cholensky ◽  
Lindsey I. James ◽  
...  

Chromatin regulatory complexes localize to specific sites via recognition of posttranslational modifications (PTMs) on N-terminal tails of histone proteins (e.g., methylation, acetylation, and phosphorylation). Molecular recognition of modified histones is mediated by “reader” protein subunits. The recruited complexes govern processes such as gene transcription, DNA replication, and chromatin remodeling. Dysregulation of histone modifications and consequent downstream effects have been associated with a variety of disease states, leading to an interest in developing small-molecule inhibitors of reader proteins. Herein, we describe a generalized time-resolved fluorescence resonance energy transfer (TR-FRET) assay for a panel of methyl-lysine (Kme) reader proteins. These assays are facile, robust, and reproducible. Importantly, this plug-and-play assay can be used for high-throughput screening (HTS) campaigns, generation of structure–activity relationships (SARs), and evaluation of inhibitor selectivity. Successful demonstration of this assay format for compound screening is highlighted with a pilot screen of a focused compound set with CBX2. This assay platform enables the discovery and characterization of chemical probes that can potently and selectively inhibit Kme reader proteins to ultimately accelerate studies of chromatin reader proteins in normal biology and disease states.


2014 ◽  
Vol 19 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Simon J. Gruber ◽  
Razvan L. Cornea ◽  
Ji Li ◽  
Kurt C. Peterson ◽  
Tory M. Schaaf ◽  
...  

We have used a “two-color” SERCA (sarco/endoplasmic reticulum calcium ATPase) biosensor and a unique high-throughput fluorescence lifetime plate reader (FLT-PR) to develop a high-precision live-cell assay designed to screen for small molecules that perturb SERCA structure. A SERCA construct, in which red fluorescent protein (RFP) was fused to the N terminus and green fluorescent protein (GFP) to an interior loop, was stably expressed in an HEK cell line that grows in monolayer or suspension. Fluorescence resonance energy transfer (FRET) from GFP to RFP was measured in the FLT-PR, which increases precision 30-fold over intensity-based plate readers without sacrificing throughput. FRET was highly sensitive to known SERCA modulators. We screened a small chemical library and identified 10 compounds that significantly affected two-color SERCA FLT. Three of these compounds reproducibly lowered FRET and inhibited SERCA in a dose-dependent manner. This assay is ready for large-scale HTS campaigns and is adaptable to many other targets.


Sign in / Sign up

Export Citation Format

Share Document