scholarly journals A Novel Purification Method of Murine Embryonic Stem Cell– and Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes by Simple Manual Dissociation

2012 ◽  
Vol 17 (5) ◽  
pp. 683-691 ◽  
Author(s):  
Tadahiro Shinozawa ◽  
Hatsue Furukawa ◽  
Eimei Sato ◽  
Kenji Takami

Cardiomyocytes derived from embryonic stem cells (ES-CMs) and induced pluripotent stem cells (iPS-CMs) are useful for toxicity and pharmacology screening. In the present study, we found that cardiomyocyte-rich beating cell clusters (CCs) emerged from murine embryonic stem cell (mESC)–derived beating EBs and from human-induced pluripotent stem cell (hiPSC)–derived beating EBs dissociated by gentle pipetting with a thin glass pipette. The percentage of cardiac troponin T (cTnT)–positive cells in the beating CCs obtained from mESC-derived and hiPSC-derived beating EBs was higher (81.5% and 91.6%, respectively) than in beating-undissociated EBs (13.7% and 67.1%, respectively). For mESCs, the yield of cTnT-positive cells from beating CCs was estimated to be 1.6 times higher than that of beating EBs. The bromodeoxyuridine labeling index of mouse ES-CMs and human iPS-CMs in beating CCs was 1.5- and 3.2-fold, respectively, greater than those in beating EBs. To investigate the utility of the cells in toxicity assessment, we showed that doxorubicin, a cardiotoxic drug, induced myofilament disruption in cardiomyocytes isolated by this method. This simple method enables preparation of mouse ES-CMs and human iPS-CMs with better proliferative activity than beating EBs not dissociated by pipetting, and the cardiomyocytes are useful for drug-induced myocardial toxicity testing.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Wenyi Chen ◽  
Johannes Riegler ◽  
Elena Matsa ◽  
Qi Shen ◽  
Haodi Wu ◽  
...  

Introduction: Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can serve as an unlimited cell source for cardiac regenerative therapy. However, the functional equivalency of both approaches has not been previously reported. Here we performed head-to-head comparison on the beneficial effects of ESC-CM and iPSC-CMs in restoring cardiac function in a rat myocardial infarction (MI) model. Methods & Results: Human ESCs and iPSCs were differentiated into cardiomyocytes using small molecules. FACS analysis confirmed ~85% and ~83% of cells differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T, and immunofluorescence staining demonstrated that ESC-CMs and iPSC-CMs have striated sarcomeric structure (Figure A-B). Both ESC-CMs and iPSC-CMs displayed similar maturity for calcium handling (transient amplitude: ΔF/F 0 = 3.8±0.3; time to peak: ~200 ms; 50% transient duration: ~400 ms). qRT-PCR showed that ESC-CMs and iPSC-CMs expressed CASQ2, GJA5, KCNJ2, KCNJ5, MYH6, MYH7, and SCN5A at comparable levels to human fetal heart tissue. Next, ESC-CMs and iPSC-CMs were injected into the left ventricular free wall of infarcted hearts (adult nude rats; n=14, 10, respectively). Cardiac function was assessed by MRI one month post cell injection and the hearts were harvested and stained for human cardiac markers. Both ESC-CMs and iPSC-CMs could engraft in ischemic rat hearts (Figure C). Comprehensive functional analysis with small animal magnetic resonance imaging (MRI), echocardiography, and pressure-volume loop analysis are underway. Conclusion: We set out to perform head to head comparison for the first time that iPSC-CMs may facilitate cardiac repair at comparable levels to ESC-CMs. Unlike allogeneic ESC-CM therapy, autologous iPSC-CMs could be used to overcome immune rejection for cardiac cell transplantation in the future.


Stem Cells ◽  
2013 ◽  
Vol 31 (4) ◽  
pp. 682-692 ◽  
Author(s):  
Yun-Shen Chan ◽  
Jonathan Göke ◽  
Xinyi Lu ◽  
Nandini Venkatesan ◽  
Bo Feng ◽  
...  

2011 ◽  
Vol 15 (6) ◽  
pp. 582-593 ◽  
Author(s):  
Koichi Hayashi ◽  
Masayuki Hashimoto ◽  
Masao Koda ◽  
Atsuhiko T. Naito ◽  
Atsushi Murata ◽  
...  

Object Clinical use of autologous induced pluripotent stem cells (iPSCs) could circumvent immune rejection and bioethical issues associated with embryonic stem cells. Spinal cord injury (SCI) is a devastating trauma with long-lasting disability, and current therapeutic approaches are not satisfactory. In the present study, the authors used the neural stem sphere (NSS) method to differentiate iPSCs into astrocytes, which were evaluated after their transplantation into injured rat spinal cords. Methods Induced pluripotent stem cell–derived astrocytes were differentiated using the NSS method and injected 3 and 7 days after spinal contusion–based SCI. Control rats were injected with DMEM in the same manner. Locomotor recovery was assessed for 8 weeks, and sensory and locomotion tests were evaluated at 8 weeks. Immunohistological parameters were then assessed. Results Transplant recipients lived for 8 weeks without tumor formation. Transplanted cells stretched their processes along the longitudinal axis, but they did not merge with the processes of host GFAP-positive astrocytes. Locomotion was assessed in 3 ways, but none of the tests detected statistically significant improvements compared with DMEM-treated control rats after 8 weeks. Rather, iPSC transplantation caused even greater sensitivity to mechanical stimulus than DMEM treatment. Conclusions Astrocytes can be generated by serum treatment of NSS-generated cells derived from iPSCs. However, transplantation of such cells is poorly suited for repairing SCI.


Sign in / Sign up

Export Citation Format

Share Document