scholarly journals Characterizing Human Ion Channels in Induced Pluripotent Stem Cell–Derived Neurons

2012 ◽  
Vol 17 (9) ◽  
pp. 1264-1272 ◽  
Author(s):  
Alison Haythornthwaite ◽  
Sonja Stoelzle ◽  
Alexander Hasler ◽  
Andrea Kiss ◽  
Johannes Mosbacher ◽  
...  

Neurons derived from human-induced pluripotent stem cells were characterized using manual and automated patch-clamp recordings. These cells expressed voltage-gated Na+ (Nav), Ca2+ (Cav), and K+ (Kv) channels as expected from excitable cells. The Nav current was TTX sensitive, IC50 = 12 ± 6 nM ( n = 5). About 50% of the Cav current was blocked by 10 µM of the L-type channel blocker nifedipine. Two populations of the Kv channel were present in different proportions: an inactivating (A-type) and a noninactivating type. The A-type current was sensitive to 4-AP and TEA (IC50 = 163 ± 93 µM; n = 3). Application of γ-aminobutyric acid (GABA) activated a current sensitive to the GABAA receptor antagonist bicuculline, IC50 = 632 ± 149 nM ( n = 5). In both devices, comparable action potentials were generated in the current clamp. With unbiased, automated patch clamp, about 40% of the cells expressed Nav currents, whereas visual guidance in manual patch clamp provided almost a 100% success rate of patching “excitable cells.” These results show high potential for pluripotent stem cell–derived neurons as a useful model for drug discovery, in combination with automated patch-clamp recordings for high-throughput and high-quality drug assessments at human neuronal ion channels in their correct cellular background.

2015 ◽  
Vol 108 (2) ◽  
pp. 585a
Author(s):  
Olaf Scheel ◽  
Stefanie Frech ◽  
Bogdan P. Amuzescu ◽  
Jörg Eisfeld ◽  
Kun-Han Lin ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
pp. 46 ◽  
Author(s):  
Jann Harberts ◽  
Max Kusch ◽  
John O’Sullivan ◽  
Robert Zierold ◽  
Robert H. Blick

Though patch clamping at room temperature is a widely disseminated standard procedure in the electrophysiological community, it does not represent the biological system in mammals at around 37 °C. In order to better mimic the natural environment in electrophysiological studies, we present a custom-built, temperature-controlled patch clamp platform for upright microscopes, which can easily be adapted to any upright patch clamp setup independently, whether commercially available or home built. Our setup can both cool and heat the platform having only small temperature variations of less than 0.5 °C. We demonstrate our setup with patch clamp measurements at 36 °C on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Passive membrane parameters and characteristic electrophysiological properties, such as the gating properties of voltage-gated ion channels and the firing of action potentials, are compared to measurements at room temperature. We observe that many processes that are not explicitly considered as temperature dependent show changes with temperature. Thus, we believe in the need of a temperature control in patch clamp measurements if improved physiological conditions are required. Furthermore, we advise researchers to only compare electrophysiological results directly that have been measured at similar temperatures since small variations in cellular properties might be caused by temperature alterations.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zhihan Zhao ◽  
Huan Lan ◽  
Ibrahim El-Battrawy ◽  
Xin Li ◽  
Fanis Buljubasic ◽  
...  

Background. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are providing new possibilities for the biological study, cell therapies, and drug discovery. However, the ion channel expression and functions as well as regulations in hiPSC-CMs still need to be fully characterized. Methods. Cardiomyocytes were derived from hiPS cells that were generated from two healthy donors. qPCR and patch clamp techniques were used for the study. Results. In addition to the reported ion channels, INa, ICa-L, ICa-T, If, INCX, IK1, Ito, IKr, IKs IKATP, IK-pH, ISK1–3, and ISK4, we detected both the expression and currents of ACh-activated (KACh) and Na+-activated (KNa) K+, volume-regulated and calcium-activated (Cl-Ca) Cl−, and TRPV channels. All the detected ion currents except IK1, IKACh, ISK, IKNa, and TRPV1 currents contribute to AP duration. Isoprenaline increased ICa-L, If, and IKs but reduced INa and INCX, without an effect on Ito, IK1, ISK1–3, IKATP, IKr, ISK4, IKNa, ICl-Ca, and ITRPV1. Carbachol alone showed no effect on the tested ion channel currents. Conclusion. Our data demonstrate that most ion channels, which are present in healthy or diseased cardiomyocytes, exist in hiPSC-CMs. Some of them contribute to action potential performance and are regulated by adrenergic stimulation.


2019 ◽  
Vol 28 (14) ◽  
pp. 920-932 ◽  
Author(s):  
Xiao-Hua Zhang ◽  
Tomo Šarić ◽  
Narges Zare Mehrjardi ◽  
Sarkawt Hamad ◽  
Martin Morad

Sign in / Sign up

Export Citation Format

Share Document