cytoskeleton disruption
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 22 (13) ◽  
pp. 6714
Author(s):  
Gang Pei ◽  
Anca Dorhoi

The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.


2021 ◽  
Vol 22 (8) ◽  
pp. 3946
Author(s):  
Chou-Yuan Ko ◽  
Po-Chang Shih ◽  
Po-Wei Huang ◽  
Yi-Hsin Lee ◽  
Yen-Fu Chen ◽  
...  

Liver cancer remains a leading cause of death, despite advances in anti-cancer therapies. To develop novel drugs, natural products are being considered as a good source for exploration. In this study, a natural product isolated from a soft coral was applied to evaluate its anti-cancer activities in hepatocellular carcinoma SK-HEP-1 cells. Sinularin was determined to have half-maximal inhibitory concentration (IC50) values of ~10 μM after 24, 48, and 72 h. The TUNEL assay and annexin V/PI staining results showed that sinularin induced DNA fragmentation and apoptosis, respectively. An investigation at the molecular level demonstrated that the expression levels of cleaved caspases 3/9 were significantly elevated at 10 μM sinularin. Mitochondrial and intracellular reactive oxygen species (ROS) levels were significantly increased following sinularin treatment, which also affected the mitochondrial membrane potential. In addition, it significantly lowered the mitochondrial respiration parameters and extracellular acidification rates at 10 μM. Further investigation showed that sinularin significantly attenuated wound healing, cell migration, and potential colony formation at 10 μM. Fluorescence microscopic observations showed that the distribution of F-actin filaments was significantly altered at 10 μM sinularin. Supported by Western blot analyses, the expression levels of AKT, p-ERK (extracellular-signal-related kinase), vimentin and VEGF were significantly down-regulated, whereas p-p38, pJNK and E-cadherin were significantly increased. Overall, at the IC50 concentration, sinularin was able to significantly affect SK-HEP-1 cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xueqin Huang ◽  
Lingzhi Chen ◽  
Yuping Zhang ◽  
Suyan Zhou ◽  
Huai-Hong Cai ◽  
...  

How to actively target tumor sites manipulating the controllable release of the encapsulated anticancer drugs and photosensitizers for synergistic anticancer therapy remains a big challenge. In this study, a cancer cell-targeted, near-infrared (NIR) light-triggered and anticancer drug loaded liposome system (LPs) was developed for synergistic cancer therapy. Photosensitizer indocyanine green (ICG) and chemotherapy drug Curcumin (CUR) were coencapsulated into the liposomes, followed by the surface conjugation of GE11 peptide for epidermal growth factor receptor (EGFR) targeting on the cancer cell surface. Strictly controlled by NIR light, GE11 peptide modified and CUR/ICG-loaded LPs (GE11-CUR/ICG-LPs) could introduce hyperthermia in EGFR overexpressed A549 cancer cells for photothermal therapy, which could also trigger the increased release of CUR for enhanced cancer cell inhibition. GE11-CUR/ICG-LPs synergized photochemotherapy could induce reactive oxygen species (ROS) generation and cytoskeleton disruption to activate stronger apoptotic signaling events than the photothermal therapy or chemotherapy alone by regulating Bax/Bcl-2 and PI3K/AKT pathways. This EGFR-targeted drug-delivery nanosystem with NIR sensitivity may potentially serve in more effective anticancer therapeutics with reduced off-target effects.


Toxins ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 693
Author(s):  
Shuaishuai Xu ◽  
Xiping Yi ◽  
Wenya Liu ◽  
Chengcheng Zhang ◽  
Isaac Yaw Massey ◽  
...  

Cyanobacterial blooms triggered by eutrophication and climate change have become a global public health issue. The toxic metabolites microcystins (MCs) generated by cyanobacteria can accumulate in food chain and contaminate water, thus posing a potential threat to human and animals health. Studies have suggested that aside liver, the kidney may be another target organ of MCs intoxication. Therefore, this review provides various evidences on the nephrotoxicity of MCs. The review concludes that nephrotoxicity of MCs may be related to inhibition of protein phosphatases and excessive production of reactive oxygen species, cytoskeleton disruption, endoplasmic reticulum stress, DNA damage and cell apoptosis. To protect human from MCs toxic consequences, this paper also puts forward some directions for further research.


2020 ◽  
Vol 21 (19) ◽  
pp. 6993 ◽  
Author(s):  
Nima Abbasian ◽  
Alan Bevington ◽  
James O. Burton ◽  
Karl E. Herbert ◽  
Alison H. Goodall ◽  
...  

Hyperphosphataemia increases cardiovascular mortality in patients with kidney disease. Direct effects of high inorganic phosphate (Pi) concentrations have previously been demonstrated on endothelial cells (ECs), including generation of procoagulant endothelial microvesicles (MVs). However, no mechanism directly sensing elevated intracellular Pi has ever been described in mammalian cells. Here, we investigated the hypothesis that direct inhibition by Pi of the phosphoprotein phosphatase PP2A fulfils this sensing role in ECs, culminating in cytoskeleton disruption and MV generation. ECs were treated with control (1 mM [Pi]) vs. high (2.5 mM [Pi]), a condition that drives actin stress fibre depletion and MV generation demonstrated by confocal microscopy of F-actin and NanoSight Nanoparticle tracking, respectively. Immuno-blotting demonstrated that high Pi increased p-Src, p-PP2A-C and p-DAPK-1 and decreased p-TPM-3. Pi at 100 μM directly inhibited PP2A catalytic activity. Inhibition of PP2A enhanced inhibitory phosphorylation of DAPK-1, leading to hypophosphorylation of Tropomyosin-3 at S284 and MV generation. p-Src is known to perform inhibitory phosphorylation on DAPK-1 but also on PP2A-C. However, PP2A-C can itself dephosphorylate (and therefore inhibit) p-Src. The direct inhibition of PP2A-C by Pi is, therefore, amplified by the feedback loop between PP2A-C and p-Src, resulting in further PP2A-C inhibition. These data demonstrated that PP2A/Src acts as a potent sensor and amplifier of Pi signals which can further signal through DAPK-1/Tropomyosin-3 to generate cytoskeleton disruption and generation of potentially pathological MVs.


2020 ◽  
Vol 325 ◽  
pp. 109109 ◽  
Author(s):  
Raimundo Gonçalves de Oliveira-Júnior ◽  
Nolwenn Marcoult-Fréville ◽  
Grégoire Prunier ◽  
Laureen Beaugeard ◽  
Edilson Beserra de Alencar Filho ◽  
...  

2020 ◽  
Author(s):  
Zhangang Xiao ◽  
Jing Shen ◽  
Qijie Zhao ◽  
Shixin Xiang ◽  
Yinxin Zhu ◽  
...  

Abstract Background: JMJD3 is a jmjd domain containing histone demethylase which can remove methyl groups from lysine 27 of histone 3 (H3K27) to active histone methylated genes. Previous studies have demonstrated that JMJD3 played a crucial role in inflammation. Methods: Our study showed that JMJD3 was significantly down-regulated in pancreatic ductal adenocarcinoma (PDAC) cell lines and tissues. Restored expression of JMJD3 inhibited oncogenic phenotypes of PDAC cells, including cell proliferation, cell migration, and in vivo tumorigenicity, indicating a tumor suppressive role. Gene-expression microarray revealed that Hexokinase domain containing 1 (HKDC1) was one of the JMJD3 downstream targets. Results: The expression of JMJD3 and HKDC1 in PDAC tissues was positively correlated. High H3K27 tri-methylation (H3K27me3) status in HKDC1 gene was attenuated by ectopic expression of JMJD3 in PDAC cells, suggested that JMJD3 regulated HKDC1 expression by histone demethylation activity. The tumor suppressive role of HKDC1 in PDAC was also proved. Moreover, HKDC1 was demonstrated to competitively bind to spectrin beta Ⅱ to induce cytoskeleton disruption, which may contribute to tumor suppression. Conclusion: Taken together, our study indicates that JMJD3 may disrupt spectrin-dependent cytoskeleton via activation of HKDC1 to suppress PDAC.


2020 ◽  
Vol 94 (4) ◽  
pp. 1191-1202 ◽  
Author(s):  
Raphaël Cornu ◽  
Claire Chrétien ◽  
Yann Pellequer ◽  
Hélène Martin ◽  
Arnaud Béduneau

2020 ◽  
Vol 191 (4) ◽  
pp. 1545-1561 ◽  
Author(s):  
Hong Bae Kim ◽  
Seho Lee ◽  
Jong Hoon Chung ◽  
Seong Nam Kim ◽  
Chang Kyu Sung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document