Indigenous Ecological Reconstruction After Industrial Ruin in Two Iconic Sámi Catchments: Ethics of Comanagement?

2021 ◽  
Vol 42 (2) ◽  
pp. 254-275
Author(s):  
Tero Mustonen

The applicability of Indigenous ethics to the evaluation of ecological restoration is explored through two case examples involving the Indigenous Sámi rivers of Näätämö and Ponoi in the European North. Six key restoration approaches are described that would have been overlooked had it not been for the use of Indigenous ethics from the start of the work. The detection of rapidly proceeding climate change impacts and species range shifts, algae blooms, documentation of gendered coastal lifestyles, and ultimately the ecological restoration of salmonid habitats were recognized as critical markers of success when these approaches were practiced, lived and cherished by all members of the cogovernance community. This article asks critical questions about the role of Indigenous knowledge and rights within comanagement and environmental evaluations and makes the case for land-based lifestyles as vehicles for maintaining distinct, culturally relevant ethics processes.

2021 ◽  
Vol 254 ◽  
pp. 117248
Author(s):  
Urs Schenker ◽  
Julia Chardot ◽  
Karim Missoum ◽  
Alexey Vishtal ◽  
Julien Bras

Bothalia ◽  
2008 ◽  
Vol 38 (2) ◽  
Author(s):  
L. Agenbag ◽  
K. J. Elser ◽  
G. F. Midgley ◽  
C. Boucher

A temperature and moisture gradient on the equator-facing slope of Jonaskop on the Riviersonderend Mountain. Westem Cape has been selected as an important gradient for monitoring the effects of climate change on fynbos and the Fynbos- Succulent Karoo ecotone. This study provides a description of plant diversity patterns, growth form composition and species turnover across the gradient and the results of four years of climate monitoring at selected points along the altitudinal gradient.The aim o f this study is to provide data for a focused monitoring strategy for the early detection of climate change-related shifts in species’ ranges, as well as gaining a better understanding of the role of climate variability in shaping species growth responses, their distributions, and other ecosystem processes.


Author(s):  
Sharon Friel

This chapter explains the role of human activities in driving climate change, and some of its most significant impacts. It discusses justice issues raised by climate change, including causal responsibility, future development rights, the distribution of climate change harms, and intergenerational inequity. The chapter also provides a status update on current health inequities, noting the now recognized role of political, economic, commercial, and social factors in determining health. This section also discusses environmental epidemiology and the shift to eco-social approaches and eco-epidemiology, noting that while eco-epidemiologists have begun to research the influence of climate change on health, this research has not yet considered in depth the influence of social systems. The chapter concludes with an overview of how climate change exacerbates existing health inequities, focusing on the health implications of significant climate change impacts, including extreme weather events, rising sea levels, heat stress, vector-borne diseases, and food insecurity.


Author(s):  
Patricia Kameri-Mbote

This chapter describes the roles of the forty-nine least developed countries (LDCs) in the international climate change regime and climate change law. It investigates the following questions: How has the historical role of the LDCs evolved in relation to the climate change regime? What are the key legal challenges facing these countries? In order to address these questions, this chapter examines the role of the LDCs through five phases of the climate negotiations thus far: Pre-1990 (Phase 1), 1990—1996 (Phase 2), 1997—2001 (Phase 3), 2001—2007 (Phase 4), and 2008—2013 (Phase 5). Together, they have contributed the least to the climate change problem, but experienced the highest climate change impacts, because of their higher levels of vulnerability and lower adaptive capacity. The chapter also discusses how the LDCs are caught in the cross-fire between the emerging economies, Organization of the Petroleum Exporting Countries (OPEC), and developed countries.


2019 ◽  
Vol 374 (1768) ◽  
pp. 20180186 ◽  
Author(s):  
Jennifer M. Donelson ◽  
Jennifer M. Sunday ◽  
Will F. Figueira ◽  
Juan Diego Gaitán-Espitia ◽  
Alistair J. Hobday ◽  
...  

Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation.This article is part of the theme issue ‘The role of plasticity in phenotypic adaptation to rapid environmental change’.


2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2019 ◽  
Vol 76 (6) ◽  
pp. 1390-1392 ◽  
Author(s):  
Manuel Barange

Abstract It is common to assume that climate change impacts on future fish catches, relative to current levels of catch, are directly proportional to changes in the capacity of the ocean to produce fish. However, this would only be the case if production was optimized, which is not the case, and continues to do so in the future, which we do not know. It is more appropriate to see changes in the ocean’s productive capacity as providing an upper limit to future fish catches, but whether these catches are an increase or a decrease from present catch levels depends on management decisions now and in the future, rather than on the ocean’s productive capacity alone. Disregarding the role of management in driving current and future catches is not only incorrect but it also removes any encouragement for management agencies to improve performance. It is concluded that climate change provides one of the most powerful arguments to improve fisheries—and environmental—management, and thus fisheries sustainability globally.


Sign in / Sign up

Export Citation Format

Share Document